P&A SEMINAR PLUGGING & ABANDONMENT 8th of May 2025

Welcome to the 2nd

Plug and abandonment Seminar 2025

Monica Ovesen, Head of Drilling & Well Technology

Theme: Innovation, Collaboration and use of new technology

Several fields in production will have a decline in production rate from 2030...

More than 2000 wells expected to be permanent plugged between 2025 – 2050/2070.

Wild Well Control reports an increase in well control incidents globally

Are WE on NCS prepared?

Update from HAVTIL P&A group

Plug and Abandonment seminar 2025

Norwegian Ocean Industry Authority

09:00 - 09:10	We	lcome 8	82 I	Introc	luction
---------------	----	---------	------	--------	---------

09:10 - 09:35 Updates from HAVTIL PP&A

09: 35 –09:50 Expectations in Late life phase

09:50 - 10:20 UK & Norway Wells Collaboration

10:20 Coffee Break

10:45 – 11:10 P&A Innovative Gas Tracking Technology

11:10 – 11:30 New wireline deployed technology for rigless

11:30 – 11:45 RockSolid – a potential game changer in P&A

11:45 – 12:30 Lunch break and Networking

12:30 – 12:50 Status on SFA Plugging campaign

12:50- 13:10 Hod A P&A Learnings & Opportunities for P&A

13:10- 13.30 Updates Total Energies R&D Global

13:30 - 14:00 Coffee break

14:00 – 14:20 P&A updates from Greater Ekofisk Area

14:20 – 14:35 IOGP, Well abandonment for CO2 storage,

14:35 – 14:45 Wrap-up (What did we learn/share today)

Monica Ovesen, Havtil

PP&A gruppen, Havtil

Niels Erik Hald, Sokkeldirektoratet

Lewis Harper/ Magnus Svensson

Erik Tegelaar, MPA

Svein Bjelland, Axter

Kristian Solhaug, Interwell

Thomas Kibsgaard-Vatn, 360Equinor

Martin Straume, Aker BP

Johan Kverneland, Total Energies

Petter Erland, ConocoPhillips

Ben Hern, Equinor

Nina Ringøen, Havtil

Innovation, collaboration and use of new technology

- □ Several fields are in the late life phase
- ☐ Use of new technology for permanent plugging is crucial for continuous improvements
- ☐ Collaboration and sharing of knowledge and lessons learn
- ☐ Continuous improvement is one of the key principle in the Norwegian HSE regulations

Facility Regulations § 9

Qualification of new technology and new materials

TRL-process

Criteria's shall be drawn up for

- Development,
- Testing and
- Use

Includes investigation and obtaining objective proof that the needs for a specific intended use are covered.

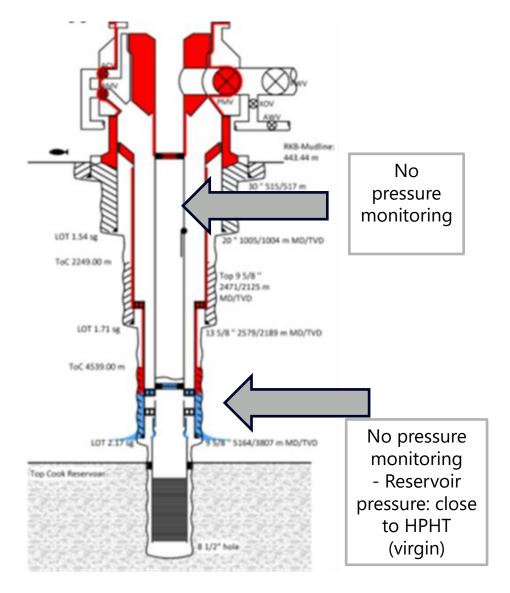
New technology as mentioned in the first subsection, may be new products, new materials, analysis tools or known products used in a new way.

The technology or methods shall be adapted to already accepted solutions (Verification /best practice)

> The qualification or testing shall demonstrate that applicable requirements can be fulfilled.

Guidance Level:

DNVGL RP-A203 and Oil & Gas **UK Guidelines Use of** Barrier Materials in Well Decomissioning Guidelines


A high safety level is perishable....

Well Control Incidents PP&A

Recordable well control incident PP&A 2024

- Re-entry of a temporary abandoned subsea well without continuous monitoring of primary and secondary barrier
- ☐ Phase 1 was executed with LWI. Well was temporary abandoned for one year.

Root causes for "well incidents"

"It was not recognized that an MOC was needed"

"The risk was not identified"

"Considered a routine operation"

'<u>Lack of routines</u> for checking (test port blind plugs)..."

"Procedures for conducting operation not completely aligned"

"MOC should have been performed considering the 9 7/8" could not be recovered as planned"

"Decision to empty trip tank to poor-boy was done withtout a risk assessment"

"A new <u>risk assessment</u> should have been done...
it was not considered a new risk"

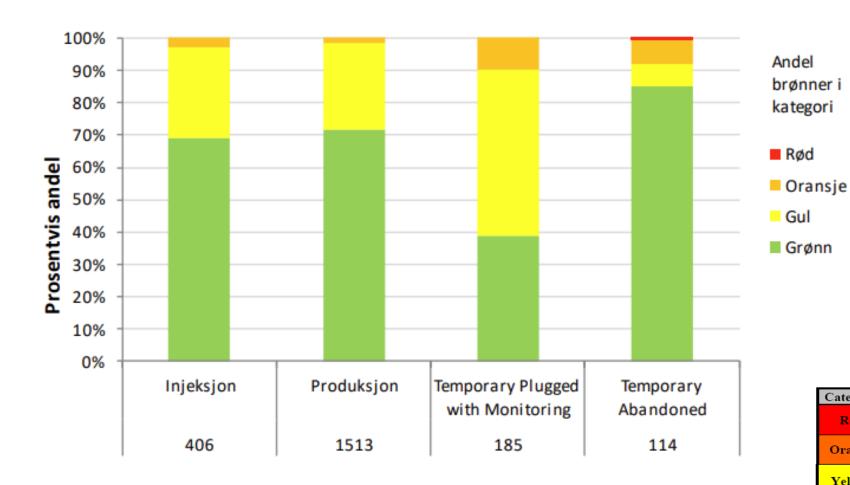
"MOC not documented"

Not all direct and underlying causes are technical causes!

	Well control incident
Locat Rig ty Well t Date:	ype: <rig type=""> type: <well type=""></well></rig>
Plan:	
• De	escription of plan
<u></u>	
1 -	ation with course of events:
• E	vent description
ļ	
Ĭ	
Reas	on for events:
• Fr	ree text evaluation
Lesso	ons Learned:
• Er	ee text evaluation
	mmended actions:
• En	ee text evaluation

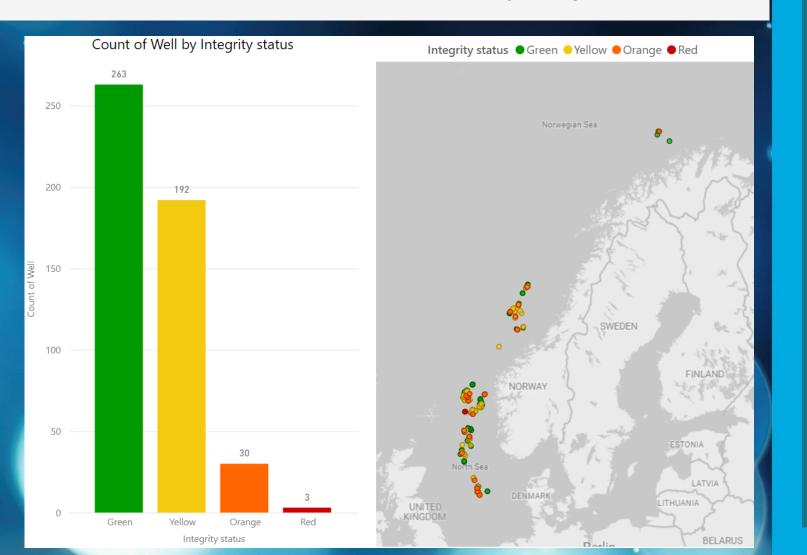
Well control incident

Location: <location> Rig type: <rig type=""> Well type: <well type=""> Date: <date> Cr Cr</date></well></rig></location>				itical Issues: Free text evaluation	
Dir	ect Cause:		Und	derlying Cause:	
	Prognosis i	gnosis incorrect Risk accepted			
	Shallow gas			Error in program / procedure	
	Shallow water flow			Procedure not followed	
	Incorrect m	ud weight	Lack of competence		
	Swabbing			Communication error (missing, wrong, incomplete, etc.)	
	Ballooning			Incorrect use of equipment	
	HC accumulation below barrier element			Equipment failure	
	Surface pressure control system failure			BOP failure	
	Downhole r	nechanical barrier failure		Other:	
	Downhole o	ement / casing barrier failure			
	Other:				


Technical casues / Organizational causes / Operational causes (?)

RNNP 2025 - «Active wells» on NCS

From 2245 wells in 2024 to 2218 wells in 2025



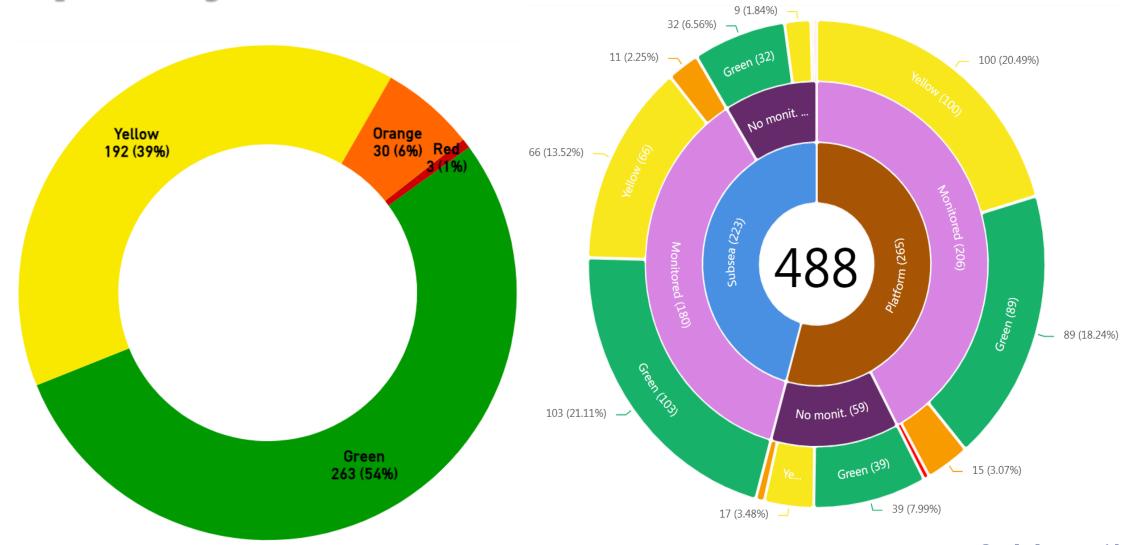
Category	Principle
Red	One barrier failure and the other is degraded/not verified, or leak to surface
Orange	One barrier failure and the other is intact, or a single failure may lead to leak to surface
Yellow	One barrier degraded, the other is intact
Green	Healthy well - no or minor issue

Norwegian Continental Shelf 2024

About 488 of 2245 wells on NCS are temporary abandoned

Well Inventory 2024:

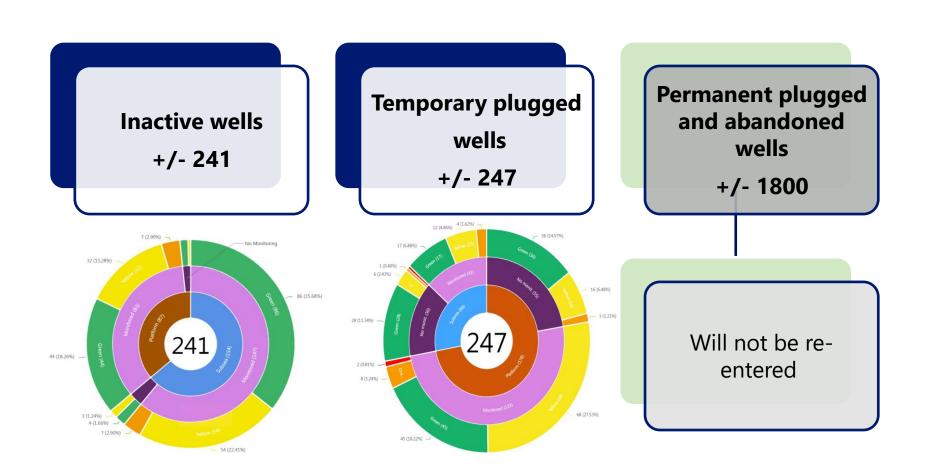
- +/- 2245 wells
 - Updated 1 January 2024
 - 488 temporary plugged & abandoned wells (22%)
 - Updated 15th of March 2024

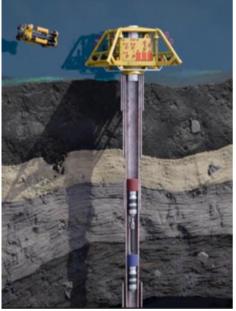

Permanent plugged wells:

+/- 1800* permanent plugged exploration and development wells

* Updated October 2024, NOD

Temporary abandoned wells 2024





EU Regulation Methane emission Article 18 WELLS

....reports containing information on quantification of methane emissions

Sharing of knowledge

Gather information, develop and share knowledge and best practise with the global P&A community.

Creeping shale / Creeping formation:

- Review of qualification process and status update
- Input to the revision of NORSOK D-010 EAC table 52 Creeping Formation

Permanent plugged and abandoned wells

- Inventory list
 - Exploration wells +/- 1400
 - Development wells +/- 350
- Seepage/leaks, and to what standard?

Havtil Norwegian Ocean Industry Authority

Stay informed Subscribe to news from havtil.no

Collaboration with other authorities and industry partners is key

Norwegian Environment Agency

