Wave-in-Deck Assessment for Fixed Offshore Structures

Konstruksjonsdagen 2023

Palle Teis Nielsen

Senior Structural Engineer Rambøll - Marine Structures Esbjerg

Hans Fabricius Hansen

Senior Metocean Engineer HAW MetOcean ApS Copenhagen

Bjørn Thomas Svendsen

Lead Structural Engineer Rambøll - Marine Structures Stavanger

- Ramboll in short
- Wave-in-Deck Assessment for Fixed Offshore Structures
- Crest Elevation Calculation

16000 in Ramboll

2000 in Ramboll Energy

Among the 10 leading energy consultancies in Europe

Ramboll Head Office

• Ramboll offices

RAMBOLL Energy Transition

40 years of experience with offshore

Partner for sustainable change

Risk, Safety – Cost reduction

New types of projects

Carbon Capture & Storage INEOS, North Sea

Seegreen Wind Farm TotalEnergies, Scotland

Floating Solar Power Plant Equinor, Norway Solar

Energy Island P2X Energinet, North Sea

Wave-in-Deck Assessment for offshore structures

Objective

Give a wide overview of likelihood for wave-in-deck on Norwegian bottom fixed offshore structures

Scope of work

- 1. Calculation of wave crest elevation for 100-, 1,000- and 10,000 year return period
- 2. Collection of platform data and calculate platform topside air gap
- 3. Evaluate on different methods and compare against other projects and measured storm data

1. Calculation of wave crest elevation

- 1. Calculation of wave crest elevation
- 2. Taking into account subsidence

- 1. Calculation of wave crest elevation
- 2. Taking into account subsidence
- 3. Extreme event

Platform Overview

- North Sea and Norwegian Sea
- In total 59 jackets in operation, split between 5 operators:

• Similar wave crest assessment has been done for platforms in Danish and British part of the North Sea.

Metocean analysis

- 14 locations on water depth 65-198 m
- 10 methods for calculating elevations

- Note that results are point-statistic results, i.e. for a platform assessment, e.g. point-to-area corrections should be considered to account for topside size.
- Combining results with platform data...

Air gap results – 100y

- One line for each metocean calculation method
- Results from the analysis method used varies approx. 2 m for all locations
- 5-10% of all platforms the anual probability for negative air-gap is higher than 10^{-2}
- All platforms with negative air gap are already planned to be un-manned during storms (Operator's inputs)

Air gap results – 10,000y

- Results from the analysis method used varies approx 3-4 m depending on the location
- For 25-60% of all platforms the anual probability for negative air-gap is higher than 10^{-4}
- Multiple platforms are planned manned during storm and is expected to have negative air gap for a 10,000-year occurance

Critical?

- Acceptance criteria for the platforms will be different
- Wave-in-Deck load calculation
- Structural resistance evaluation
- Reinforcements
- Monitoring of platforms

Wave crest height calculation

Objective

Calculate wave crest elevation with return periods up to 10,000 years using latest best-practice

Scope of work

- 1. Calculate long-term sea state distribution using best-practice statistical methods
- 2. Convolve with higher-order wave crest height distribution
- 3. Assess sensitivity of end results

Long-term Maximum Crest Height Distribution

$$P(\eta_{c,max}) = \int_{\Omega} P(\eta_{c,max} | \Omega) p(\Omega) d\Omega$$

where

 $\Omega = (H_s, T_p, ...)$: Sea state parameters

 $P(\eta_{c,max} | \Omega)$: Probability distribution of maximum crest height conditional on sea state $p(\Omega)$: Probability density of sea state parameters

Extreme value analysis of sea state distribution – Background

- Shell/Lancaster Univ. in 00'es:
 - Covariates (directional- and seasonal- rather than omni-distributions)
 - Generalised Pareto distribution tails (rooted in Extreme Value Theory)
 - 'Extrapolation' uncertainty acknowledged and included
- Shell/Lancaster approach adopted by:
 - Mærsk Oil (Tyra as-is/AWARE) (2015-)
 - LOADS JIP (2016-)
 - UK HSE (Extreme wave study 2020-2022)
 - bp (2019-)
 - Aker BP (Valhall)
 - TotalEnergies (2021-)

Crest height distribution – Background

- Field data / basin tests analysed
 - JIP's (CresT -> ShorTCresT -> LOADS)
 - Maersk Oil/TotalEnergies (Tyra as-is/AWARE)
- Conclusions
 - Higher order effects increase crest heights beyond Forristall's second order distribution
 - Wave breaking reduces crests in severely breaking sea states
 - Uncertainty in measurements
- Number of updated crest height distributions developed
 - LOADS JIP Unified crest height distribution (Swan, Karmpadakis)
 - LOADS JIP OCG distribution (Gibson, 2021)
 - Schubert/Jonathan (2020) (AWARE)

Crest height distribution – Background

- Field data / basin tests analysed
 - JIP's (CresT -> ShorTCresT -> LOADS)
 - Maersk Oil/TotalEnergies (Tyra as-is/AWARE)
- Conclusions
 - Higher order effects increase crest heights beyond Forristall's second order distribution
 - Wave breaking reduces crests in severely breaking sea states
 - Uncertainty in measurements
- Number of updated crest height distributions developed
 - LOADS JIP Unified crest height distribution (Swan, Karmpadakis)
 - LOADS JIP OCG distribution (Gibson, 2021)
 - Schubert/Jonathan (2020) (AWARE)

Work Description – Input

- Long time series of H_s , T_p , etc. required for extreme value analysis
 - <u>NORA10 hindcast</u>
 - Meteorologisk institutt Norge 65 years hindcast 1957-2022
 - <u>NEWS hindcast</u>
 - Ocean Weather hindcast 1979-2022
 - NS1200 synthetic simulation
 - Climate model simulation of 1200 years worth of present climate

• Extreme value analysis using SAM JIP code

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year include
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year include
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year include
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year include
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used
 - Joint distributions of wave period conditional on wave height

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used
 - Joint distributions of wave period conditional on wave height
 - Storm 'trajectory' sampling to model evolution of storm events

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used
 - Joint distributions of wave period conditional on wave height
 - Storm 'trajectory' sampling to model evolution of storm events

20

15

C

3

 $_{L}^{10}$

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used
 - Joint distributions of wave period conditional on wave height
 - Storm 'trajectory' sampling to model evolution of storm events
 - Historical storms matched

Ramboll

16

15

14

(<u>s</u> 13 10 12

nagnitude ([m] 11 10 8

-20

-15

-10

-5

Storm event with:

★ H_{m0} [m]

 $O T_{01} [s]$

 $H_{m0} = 10.5m$

*

0

5

10

15

20

 $T_{01} = 14.9s$

- Extreme value analysis using SAM JIP code
 - Variations with direction of storm and time of year included
 - -> Directional and seasonal covariates
 - Uncertainty in 'extrapolation' accounted for
 - -> 'Predictive' distributions used
 - Joint distributions of wave period conditional on wave height
 - Storm 'trajectory' sampling to model evolution of storm events
 - Historical storms matched and rescaled
 - Sea state maximum crest height sampled from parametric crest height distribution $P(\eta_c|H_{m0}, T_{01}, \sigma_{\theta}, d)^N$

- Folding with short-term distributions
 - Forristall distribution (for reference)
 - LOADS OCG distribution

Extreme Value Analysis – Associated storm surge

• Storm surge can correlate with waves -> extra contribution to total water level

Results

- Analysis at 14 points
- 10 different results at each point
 - 5 different data sets
 - 2 different priors

Results – 100 year H_{m0}

 $H_{m0} \ [\mathrm{m}] - 100 \ \mathrm{year} \ \mathrm{RP}$

Results – 100 year crest elevation

OCG (2021) $\eta_{\rm max}~[{\rm mMSL}]-100~{\rm year}~{\rm RP}$

Results – 10,000 year H_{m0}

 H_{m0} [m] – 10000 year RP

Results – 10,000 year crest elevation

OCG (2021) $\eta_{\rm max}$ [mMSL] – 10000 year RP

Conclusive remarks

- Range of 100 year crest elevation estimates (min-max) from 1.0 to 2.5 meter
- Range of 10,000 year crest elevation estimates (min-max) from 2.0 to 4.5 meter
- Differences due to
 - Input data differences
 - Extrapolation (priors, data set length)
- Uncertainties included
 - Extrapolation (threshold, parameter) uncertainty
 - LOADS OCG crest height distribution uncertainty
- Uncertainties not included
 - Measurement uncertainty and bias (field and basin)
 - Input data uncertainty (hindcast scatter)

Thank you!

Palle Teis Nielsen

Senior Structural Engineer Marine Structures Ramboll Energy

D +45 51617320 pltn@ramboll.com Hans Fabricius Hansen Senior Metocean Engineer HAW MetOcean ApS

D +45 61710362 hfh@haw-metocean.com

Questions?

