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Structural components

Tensile armor profile:

Pressure spiral profile:

Carcass

Outer sheath

Liner

Anti-wear
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Some historical perspectives

Tests

Development
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Lifetime prediction

Distribution
- curvature
- tension

Dynamic 
loads

- Stress/strain
- Slip in pipe wall 
components due 
to friction

Small scale tests

Fatigue life
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The Bflex FE Program (1996->)

Global BFLEX model Local PFLEX 
model RUC model

• 3D non-linear static and dynamic stress & fatigue
analysis of helical structures (SINTEF Ocean)

• A variety of special purpose finite structural and contact elements
• Curved beam and line contact
• Several friction formulations

• Developed in 2019 to also include lateral buckling with in-
layer contact (RUC model above)

Local BOUNDARY 
model
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Governing stress components: 

xx-fx is the axial stress which is constant over the entire cross-section and  is a result of the  Fx axial 
force from the pressure (hoop and end-cap effects), the riser tension and torsion moment and for the 
tensile armour also due to friction.

xx-my is the normal curvature stress which has its maximum at the outer and inner surface of the armour 
tendon at the tensile/compressive side of the riser and is a result of the  My bending moment introduced 
primarily due to riser bending, for the pressure armour also due to bending stiffener reaction forces. 

xx-mz is the transverse curvature stress which has its maximum at the sides of the armour tendon at the 
neutral axis of the riser and is a result of the  Mz bending moment introduced by global riser bending and 
in the Zeta case also due to the rotation of the cross-section due to internal pressure.

xy is the torsion stress due to bending (normally small)

xx-mz

xx-my
xx-fx

xy
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Additional stress  components of  pressure
armours:
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• yy, zz and yz stresses will occur in 
addition to xx

• Not important for static loads

• Governing for dynamic loads and fatigue in 
pressure armour

• Both longitudinal and transverse crack growth 
need to be checked 
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• Global analysis by either using:
– Standard linear elastic beam elements applying the sliding bending

stiffness

– Resultant based beam elements that capture the hysteresis (curves
describing moment-curvature, tension-axial strain, torque – torsion
obtained from e.g. BFLEX and based on a 2D assumption)

• Output to local stress and fatigue analysis in the form of 
either:
– Time series of tension and curvature for cases where the exposed

(loaded) section is long away from end fitting

– Time series of tension and angles for cases where the exposed (loaded) 
section is close to end fitting

Alternative modelling approaches
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• By assuming that the cross-section is long away from end-fittings:

– The stress will only be a function of the angular position of the material 
point

– Then it is possible to apply the 2D assumption for the local stress 
model:

• Converting the global model time series in terms of tension and 
curvature directly into time series of stress

• Perform fatigue calculations

• In the opposite case, 3D models are required to capture the end (BC) 
effect:

– By a beam or  shell element modelling approach. Both approaches
require a spring (penalty)  formulation for friction.

– By full 3D modelling with brick elements. This enables the use of 
«exact» contact and friction formulations by a Lagrange multiplier
approach.

– Input from global analysis in terms of tension and end angle time 
series.

Alternative modelling approaches
- tensile armours

Svein Sævik - NTNU,  December 2019



11

Traditional approach for tensile armour:
• Axisymmetric stress (tension,pressure, torque) first 

established from concentric layer models:
• Simplified geometry description - concentric layers
• 3D Hooke’s law
• «Exact» contact by Lagrange multipliers
• Curved beam + thin shell/thick shell 
• E.g. Caflex (1989), Bflex(1996), Helica(2012)

• Bending fatigue stresses in tensile armour:
• The elastic bending terms are obtained from 

differential geometry assuming loxodromic/geodesic
curves

• The friction stress is found by adding up friction
shear line load over a quarter pitch

• Moment-curvature relation from 2D approach
Alternative approach for tensile armour by RUC modelling:
• Axisymmetric and bending stresses are treated

simultaneously
• No curve assumptions needed
• The effect og sliding on friction stresses captured
Bending fatigue stresses in pressure armour is treated by 
separate models:
• In BFLEX pressure armour stresses are obtained by 

combing curved beam elements with BEM

2D  stress models
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3D  stress models for tensile armour

Sandwich beam FE  (e.g. Bflex)
• Curved beam elements
• Smooth surface penalty contact to account for 

radial flexibility
• Axial friction stress  is solved with full coupling by 

means of the c-parameter (s) and the relative 
displacement between the tendon and the
prescribed plane surfaces remain plane beam 
motion

• c can be replaced by k to take shear interaction
stiffness into account

• Longitudinal end effects can be evaluated
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General 3D  FE models

• Brick/shell elements
• Arbitrary BC & geometries
• Extensive material libraries
• Exact surface-surface contact & friction

by Lagrange mutipliers
• Time consuming due to the aspect

ratio requirements limiting element 
size
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Tensile armor shear interaction effects 

 Stress variation at an arbitrary point in tensile 
armor

 K0 is a shear stiffness parameter governing the 
stress  in the stick domain

 The friction coefficient (taken as an average 
value from testing) governs the slip curvature 
and the friction stress amplitude

Stress, σ
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Tensile armor shear interaction models -
including shear deformations in plastic layers
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Tuning the shear stiffness parameter and 
evaluation of friction coefficient using sandwich 
beam model

 A shear stiffness  
parameter K0=196 MPa 
was found sufficient to 
represent the bending 
moment correctly in the 
analysis.

 Good correlation with data 
obtained from small scale 
testing!

 Best fit friction moment 
obtained at dynamic 
friction coeff. 0.21 - good 
correlation with small 
scale test!
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Model validation – moment versus curvature from 1990
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Model validation
• Stress measured by FBG in 2002 (Internal pressure, axial

load, bending)

• A lot of failure/no-failure validation points
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Tensile armor stress amplifaction due to 
BS being close to end fitting

• Applying resent BFLEX features for 
sandwich beam modelling:
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Tensile armor stress amplifaction due to 
BS being close to end fitting

• Bend stiffener

• BFLEX moment and 
sandwich 
beam(helix) models
results
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Additional bending stress about tensile
armour strong axis at end fitting pipes 
exposed to dynamic tension
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Fatigue stresses in pressure armour

• For low pressure pipes, tensile armor fatigue normally govern

• Both longitudinal and transverse failure modes need to be checked

• Normally governed by longitudinal failure mode due to stresses in the
cross-section plane

• Residual stresses in pressure armor wires plays a role in mean stress 
correction: 
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Thank you for your attention!
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