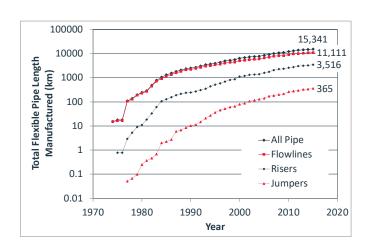
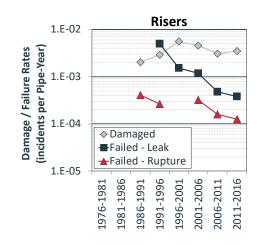
wood.

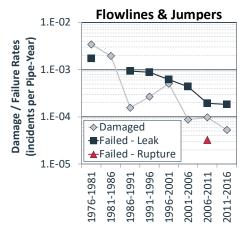
Flexible Pipe Integrity; post-Sureflex & introducing the draft El life extension guidance


Ian MacLeod, Global Assurance Lead, Asset Performance & Optimisation ian.macleod@woodplc.com

woodplc.com

Sureflex JIP (published 2017)

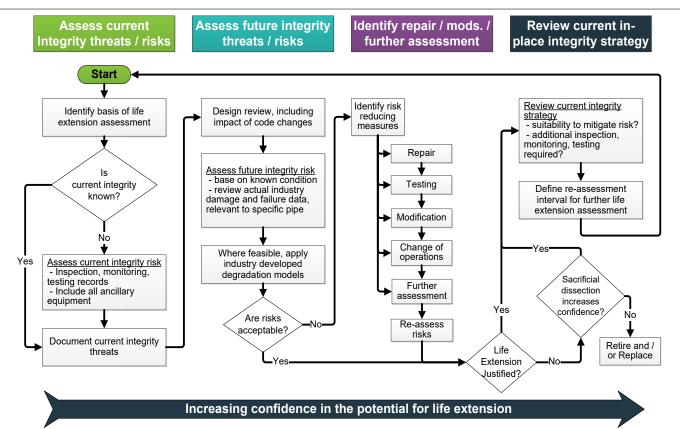

Population statistics


- 1970s to date

Damage & Failure

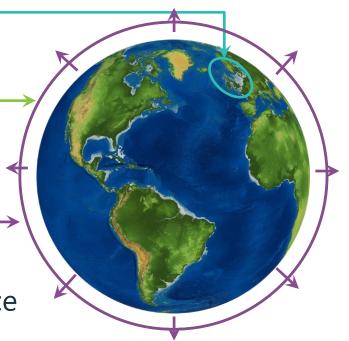
- ~600 industry events categorised
- ~16,000km inventory Incident rate trending

Sureflex JIP (published 2017)


- Inspection & Monitoring Technology
 - ~40 methods peer reviewed / categorised and guidance presented via dedicated workshops
- Integrity Management Good Practice & Lessons Learned
- Flexible Pipe Technology Developments
 - Manufacturer & other JIPs / Forums
- Operator Information Exchange Workshop Sessions
 - Detailed, but desensitised, lessons & challenges shared

Post Sureflex

- Since Sureflex, more high profile events
 - Further corrosion failures
 - Riser replacement based on fatigue experience in combination with inspection / monitoring findings
 - Further ancillary equipment degradation / failure
 - Further end fitting leaks
- Have corrosion / fatigue failure statistics reached equilibrium?
 - Probably not...
 - Need to continue collating and sharing good practice, and guidance on mitigation of in-service threats


- Historical tendency to focus on riser fatigue analysis
 - Important to address in life extension, but...
 - Represents single damage / failure mechanism with very limited in-service experience
- In comparison, significant range of damage/failure mechanisms
 - Pipe cross section
 - Ancillary equipment / interfaces
- Guidance addresses flexible pipe <u>systems</u>
 - i.e. include all mechanisms, ancillary equipment & interfaces

- Semi-qualitative risk-based approach
- Questions to consider
 - Distinguishing features of the damage / failure experience compared to the flexible pipe being assessed
 - similar design / operating conditions, test / inspection history?
 - What was the timeline to damage / failure?
 - Are there mitigating factors for the assessed pipe?

What datasets / experience do we direct these questions to?

- 3 datasets of failure mechanism experience
 - 1. "Our" world
 - Within our local operated assets
 - 2. Wider world
 - Across the global industry e.g. Sureflex
 - 3. Outside our world experience
 - Potential mechanism with limited or no reported industry experience

El Draft Guidance – refresh of industry experience

Grouped Damage / Failure		¥	Riser or	Damage / Failure Status			Sub-Total		Total	
Cause	Time Dependent	Time Independent	Flowline&Jumper	Degradation / Damage / Perceived Degradation, without Failure	Failed - Leak	Failed - Rupture	No.	%	No.	%
Sheath Damage /	√	√	Riser	189			189	34.0%	215	38.7%
Annulus Flooded			Flowline&Jumper	26			26	4.7%		
Internal Pressure Sheath,			Riser	11	5		16	2.9%	2.4	
Ageing	✓		Flowline&Jumper	3	12		15	2.7%	31	5.6%
Carcass Failure,		,	Riser	32	4		36	6.5%	26	C F0/
Multilayer PVDF Collapse		✓	Flowline&Jumper				0	0.0%	36	6.5%
Internal Pressure Sheath,			Riser	13	16		29	5.2%		- 00/
End Fitting Pull-out	✓		Flowline&Jumper	1	3		4	0.7%	33	5.9%
Vent System Anomalies /			Riser	27			27	4.9%	28	5.0%
Blockage	✓	✓	Flowline&Jumper	1			1	0.2%		
		,	Riser	59	5		64	11.5%	64	11.5%
Ancillary Equipment	~	✓	Flowline&Jumper				0	0.0%		
T 11 A 21 A 1		✓	Riser	4	7		11	2.0%	18	3.2%
Tensile Armours - Birdcaging	✓		Flowline&Jumper		7		7	1.3%		
			Riser	7		4	11	2.0%		
Corrosion of Armours	√		Flowline&Jumper	3	13		16	2.9%	27	4.9%
Overbend / Pressure		✓	Riser	2	5		7	1.3%	— 15	2.7%
Armour Unlock			Flowline&Jumper	2	6		8	1.4%		
e lew live i			Riser	1	6		7	1.3%	4-	3.1%
End Fitting Leak / Failure	✓		Flowline&Jumper		9	1	10	1.8%	17	
Internal Pressure Sheath,			Riser	3	5		8	1.4%		1
Fatique / Fracture / Microleaks	✓		Flowline&Jumper	1	4		5	0.9%	13	2.3%
Carcass Failure,			Riser	6	2		8	1.4%	9	4.604
Tearing / Pullout	✓		Flowline&Jumper		1		1	0.2%	9	1.6%
Global pipe defect,	√	√	Riser	9			9	1.6%	- 11	2.0%
Wax Blockage			Flowline&Jumper	2			2	0.4%		
- J		✓	Riser	1	3	3	7	1.3%	9	1.6%
Smooth Bore Liner Collapse			Flowline&Jumper		2		2	0.4%		
T 11 4 ME 5 1	✓		Riser	2	3	1	6	1.1%	- 6	1.1%
Tensile Armour Wire Breakage			Flowline&Jumper				0	0.0%		
O.I.			Riser	5	1	1	7	1.3%	1	4.20/
Other	✓	✓	Flowline&Jumper	14	3		17	3.1%	24	4.3%
SUM	_	•		424	122	10	556	100%	556	100%
%				76.3%	21.9%	1.8%				

El Draft Guidance – per damage / failure mechanism

- Applicability to specific pipe systems
- Description of time dependency
- Mitigations (existing or future), categories;
 - Design, Operations, Inspection, Monitoring, Testing,
 Analysis, Intervention, Management
- Relative strength of mitigations

El Draft Guidance – e.g. damage / failure mechanism

Example;

existing industry experience

Grouped Damage / Failure Mechanism	Carcass Failure,	Multilayer PVDF Collapse				
Time Dependent / Independent	Predominantly time independent.					
Applicability	Only applicable to flexible pipes with multi-layer PVDF pressure sheathes. Mechanism has only been experienced on 3-layer PVDF products to date, although 2 layer designs may also be susceptible. Collapse risk is <u>reduced</u> (not eliminated) by design modifications that were applied after identification of failures (post-2002).					
Risk Factors	Potential Mitigations					
	Type Mitigation		Strength			
Carcass Failure, Multilayer PVDF Collapse	Design	Confirm design documentation defines depressurisation limits to mitigate threat.	Weak (<u>application</u> of limits in operation is main barrier)			
	Operations	Close monitoring of bore depressurisation rates and confirmation that limits are adhered to throughout all operating phases.	Strong (if confidence is high in monitoring of actual breaches of the rate limits)			
	Inspection / Intervention	Internal inspection has been applied by some operators to verify the internal condition, although this is normally a major / abnormal intervention. This is a Strong mitigation that the collapse has not occurred at the time of inspection if the full pipe length is inspected.	Strong (in combination with future monitoring)			
	Inspection / Intervention	Some operators have discovered carcass pieces in topsides chokes / valves / process vessels. However, this is only a "passive" and weak mitigation.	Weak			
Other Supporting Notes	The failure mechanism was first identified after 2001. For older pipes, where the more restrictive depressurisation rates (to mitigate damage) may not have been included in the design documentation, the manufacturer should be consulted to confirm recommended limits. In the absence of this, typical linear maximum depressurisation rates for flexible pipe to mitigate this collapse threat is ~100barg/hr.					

El Draft Guidance – e.g. damage / failure mechanism

Example;

 Limited / no reported industry experience

Damage / Failure Cause	API RP17B Defect Ref.	Guidance (e.g. potential risk factors, industry experience)	Indicative Residual Likelihood of Occurrence
Carcass; hole, crevice, pitting, or thinning	1.1	 Erosion not normally a major issue. Although a flexible pipe design MBR is relatively low, it is not common for a pipe to be in this condition through long-term operation. Carcass / collapse design normally conservatively assumes worst case external hydrostatic pressure and no pressure in the bore. In liquid and multiphase oil/gas/water systems, the hydrostatic head in the pipe bore normally partially resists collapse even when the pipe is depressurised. Applied industry models tend to be conservative based on experience of recovered pipe samples. Carcass defects may exist (undetected by industry, as failure has not occurred), especially in areas of relatively tight bends / high flows / entrained solids. In-service inspection utilising internal visual examination may be able to confirm absence of gross defects, although cleaning may be required, and the technology is not known to have been used for this specific application to date. With combination of factors (aggressive bore contents and flowrates, tight bends, and long-term exposure), it is possible this mechanism will occur in future / long-life operations. 	Unlikely, if operated within design limits (taking into account extended operation). Possible, if operated outside of design limits (taking into account extended operation).

- Lastly, updated guidance on inspection & monitoring
 - are initiating defects really identifiable through GVI?

Bend Stiffener Tip Inspection

Stiffener Tip Damage

Cleaning Damage
In-situ Recovered

wood.