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ABSTRACT: 

 
The objective of this study is to present challenges related to positional uncertainties for directional 
drilling using MWD in the Barents Sea, specifically for deviated wellbores. The study summarizes 
relevant previous work and characterizes the expected random and systematic errors encountered 
in surveying by standard MWD in the Barents Sea. The study then assesses the availability of 
suitable aeromagnetic surveys to correct for crustal magnetic anomalies by In-Field Referencing 
(IFR). To further correct for time-varying “space weather” disturbance fields, mitigation methods 
using the available ground magnetic monitoring stations were compared, including Nearest 
Observatory, Interpolated In-Field Referencing and the Disturbance Function method. The results 
of this study will be useful to both operators and regulators in the Barents Sea, as they provide 
metrics on how well various crustal and disturbance field mitigation methods perform in the region. 
More specifically, the study presents recommendations for different sub-regions in the Barents Sea, 
allowing an operator in a particular location to use the proper mitigation methods in order to allow 
the operator to perform safe operations. More broadly, the results of the study will be useful to the 
industry at large. Despite having focused on the Barents Sea region, the study’s results will outline 
general trends with regards to the performance of different mitigation methods relative to one 
another, and should be applicable to oil fields worldwide. 
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Executive Summary 

This study by Magnetic Variation Services (MagVAR) and Add Energy estimates the 
expected positional uncertainties for wells in the Barents Sea off the Northeast coast 
of Norway.  Methods of reducing these uncertainties are discussed and evaluated.  
 
Current directional drilling technology uses a Measurement While Drilling (MWD) 
instrument to measure the gravity vector and the magnetic vector at survey stations in 
the wellbore.  From these measurements the inclination from vertical and the azimuth 
from magnetic north are determined.   The along-hole depth, inclination, and azimuth, 
are used to estimate the wellbore trajectory using the minimum curvature method.  
Uncertainties in the measurements are propagated from survey station to survey 
station and are represented by an Ellipse of Uncertainty (EoU) at each survey station.   
 
The magnetic vector has both a horizontal and a vertical component.  The horizontal 
component may be thought of as a compass needle which points to magnetic north.  
At high latitudes this horizontal component is quite small, amplifying the relative effects 
of measurement errors and variations in the magnetic environment. 
 
The earth’s magnetic field is not constant.  There are slow variations predictable over 
a period of months, and sudden variations due to charged particles from solar flares 
being deflected by the earth’s magnetic field.  These sudden variations are more 
intense at high latitudes; the aurora borealis is one manifestation of these variations.  
There are also local static variations due to magnetic minerals in the earth’s crust. 
 
In a downhole drilling assembly, the measured magnetic field is also influenced by the 
steel parts of the drillstring.  The MWD instrument is contained in a non-magnetic 
section.  Steel parts above and below the instrument cause magnetic interference 
which corrupt the compass reading.  Drillstring magnetic interference can be 
mathematically corrected in most situations provided the expected magnitude of the 
horizontal and vertical components are well known and the instrument is properly 
calibrated.  
 
The key challenge at high latitudes is to have accurate knowledge of the earth’s 
magnetic field at the time and place the measurement is taken.   It is also important to 
control the magnetic properties of the drillstring by using proper non-magnetic spacing 
of the MWD instrument from the steel components and by demagnetizing any steel 
components adjacent to the MWD instrument.  
 
An estimate of the geomagnetic vector at a particular location and date can be made 
using a worldwide geomagnetic model.  A better estimate can be made using a local 
geomagnetic model created from high-resolution aeromagnetic or marine magnetic 
surveys.  This technique is called “In-Field Referencing” Type 1, or IFR1.   
 
The study summarizes relevant previous work and characterizes the expected random 
and systematic errors encountered in MWD surveying in the Barents Sea. This includes 
modeled magnetic declination variation, solar disturbances, and drillstring magnetic 
interference.  
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The availability of suitable magnetic data for IFR1 models is assessed. The full 
spectrum of spatial wavelengths is needed, including the long wavelengths captured 
by satellite measurements which account for the crustal field, main field, secular 
variation and steady external field; and shorter wavelengths captured by local magnetic 
surveys which are the source of local crustal field anomalies. Suitable existing 
aeromagnetic data was only located for the western portion of the Barents.  New data 
could be acquired if further research does not find suitable previous aeromagnetic or 
marine magnetic data in the eastern area. 
 
At high latitudes it is important to subtract from the measured magnetic vector the time-
dependent variations due to geomagnetic storms.  Geomagnetic or solar storms are 
caused by ionospheric currents as charged particles from the sun are deflected by the 
earth’s magnetosphere.  The subtraction is most effective when the variations are 
measured with a local observatory within a few km of the drilling site.  This is called “In-
Field Referencing, Type 2” or IFR2 and is used in addition to the IFR1 method.  The 
available geomagnetic ground stations were assessed.  
 
A local observatory with a real-time data link is not always practical.  Alternative 
methods to correct for the time-varying disturbance field discussed and evaluated 
include Nearest Observatory, Interpolated In-Field Referencing (IIFR), and the 
Disturbance Function method.  These methods were compared in locations where 
other observatory data exists to provide comparison of the local time-dependent 
variations of the magnetic field.  
 
Of these three alternative methods for determining the time-dependent variations, the 
Disturbance Function achieved the best estimate of the local magnetic values, 
especially far (up to 250 km) from the nearest real-time observatory.  Nearest 
observatory and IIFR methods may be sufficient for drilling sites close (up to 50 km) to 
the nearest magnetic observatory. 
 
The combination of IFR1 models, IFR2 disturbance field monitoring, and attention to 
the magnetic properties of the drilling assembly combined with standard good drilling 
practices can reduce the positional errors to acceptable levels even in this difficult 
location.   
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1. Introduction 

1.1 Background 

Advanced drilling technologies make it possible to drill and directionally steer a 
wellbore with high accuracy. Critical to directional drilling is a measurement-while-
drilling tool (MWD). The MWD provides constant feedback on the attitude of the 
wellbore and the orientation of the bend in the motor, enabling steering control. The 
technology is based on gravity and magnetic field measurements to infer the 
orientation of the Bottom Hole Assembly (BHA) and the direction of the wellbore.  
 
During the drilling operation, most wellbore surveys are conducted by MWD tools using 
a directional sensor with 3 perpendicular accelerometers and 3 perpendicular 
magnetometers, as shown in Figure 1.1 (Maus, 2017). The triaxial accelerometers 
allow for measurement of the total gravitational field, which can be used to determine 
the instrument’s inclination from vertical and the gravity tool face. The magnetometers 
additionally provide magnetic azimuth and magnetic tool face. In addition, the system 
measures the strength of the gravity acceleration (Gtotal), the strength of the magnetic 
field (Btotal) and the angle of the magnetic field with respect to the horizontal plane 
(Dip angle). These measurements can then be compared to a reference value 
(indicative of the actual gravity and magnetic vectors at that point in space and time) 
in order to determine true orientation. 
 

 

Figure 1.1: Typical Bottom Hole Assembly (BHA) 
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At the high latitudes of the Barents Sea, the horizontal component of the geomagnetic 
field is reduced. This is because the earth is a magnetic dipole, and field lines are 
nearly perpendicular to the surface near the poles leading to small horizontal 
components, as shown in Figure 1.2. This increases the effect of internal interference 
from the drill string and external interference from crustal magnetic anomalies and 
ionospheric disturbance fields, as the same interferences become much more 
significant when the entire horizontal component becomes smaller.  
 
Key challenges for drilling at high latitudes are the active management of magnetic 
interference from the BHA and drill string components as well as the accurate 
specification of the natural geomagnetic field as a reference to convert magnetic 
azimuth to true azimuth, shown in Figure 1.3. MWD errors are particularly problematic 
for horizontal wells, warranting particular attention to all aspects of geomagnetic 
referencing. 
 

 

Figure 1.2: Earth's magnetic field, illustrating field lines nearly perpendicular to 
surface at Northern latitudes 
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Figure 1.3: True North and magnetic North azimuths, visualized 

 
With the advent of modern drilling technologies, there has been a rise in the frequency 
and type of directional drilling operations being performed. Intentional deviation of a 
wellbore can be used to achieve a wide variety of aims that would otherwise be 
uneconomical, or not feasible from an engineering perspective. Some applications of 
directional drilling include: 
 

• Drilling to a target located under an inaccessible surface location 

• Drilling to several targets from the same surface location 

• Drilling to multiple targets with the same wellbore 

• Maximizing reservoir contact area in a horizontal wellbore 

• Performing sidetrack operations 

• Drilling relief wells  
 

1.2 Problem Definition 

There are several limitations to surveys performed by magnetic MWD instruments. 
First and foremost is that the Earth’s Magnetic Field is neither temporally static, 
homogeneously distributed, nor perfectly aligned with the axis of rotation. An MWD 
survey measurement provides the orientation of the tool relative to the local magnetic 
field. However, wellbore positioning applications must relate this to a map system of 
some kind.  
 
This requires correcting the MWD survey using geomagnetic reference values of the 
magnetic declination, dip and total field. The declination is of particular importance. It 
cannot be internally verified, so care must be taken to ensure that an accurate spatial 
magnetic model is being used in the appropriate manner.  
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The geomagnetic reference values are modeled in a process called in-field referencing, 
described in 4.2.1, and presented as a three dimensional model. This model, a visual 
cutout of which is shown in  
Figure 1.4, references locations in the subsurface, and for each x/y/z, the magnetic 
declination, inclination, and total field strength are given. 
 

 

Figure 1.4: Cross sectional visual representation of an IFR model offshore of Brazil.  

 
By applying measured values to reference values, drillers can determine the tool’s true 
orientation in the subsurface, and integrate those orientations to determine position 
underground. Of course, there is some amount of error possible in both the reference 
model and the measurements, as well as the integration method (as measurements 
are not made continuously). This leads to quantifiable positional error, which is 
encapsulated in positional error models. These are sets of formulas for given error-
mitigation methods mapping drilling data to potential difference between calculated and 
actual location downhole. They are often visually represented as ellipses of 
uncertainty, where the ellipse represents the full range of possible locations based on 
a calculated location in the middle. 
 
Additionally, temporal variations must be monitored to ensure that the magnetic 
reference values are temporally correct. The high geomagnetic latitude of the Barents 
Sea means that the horizontal magnetic field is weaker than in many other areas where 
drilling typically takes place, which makes the declination more susceptible to large 
changes over time, and more likely to be impacted by local geologic anomalies. The 
location of the Barents Sea within the auroral electrojet region also means that care 
must be taken to account for temporal variations. 

Colors represent total magnetic field 
intensity, so the heat map shows how 
the field changes spatially (in x,y,z) 
from weaker (blue) to stronger (red) 
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The magnetic disturbance field in this region is due to a combination of effects caused 
by the magnetospheric ring current, auroral electrojets, and secondary induced fields.  
 
Magnetospheric Currents 
 
The magnetospheric current systems are fed by charged particles originating in the 
solar wind. The strongest contribution is from the ring current, show in red in Figure 1.5. 
The ring current increases in strength during magnetic storms, which are caused by 
coronal mass ejections from the sun. The field-aligned currents (shown in yellow in 
Figure 1.5) also have an important effect, since they predominantly affect the 
declination of the magnetic field, leading to errors in the MWD azimuth, if not corrected 
for.  
 

 

Figure 1.5: Magnetospheric current systems contributing to the geomagnetic 
disturbance field at high latitudes 
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Auroral Electrojets 
 
The ionosphere is a region approximately 80 km to 1000 km above the Earth’s surface. 
It is much closer to the Earth than the magnetosphere. Currents in the ionosphere are 
present even during quiet times and are  caused by tides of the atmosphere. During 
magnetic storms, a strong electric field is imposed through field-aligned currents, see 
yellow lines in Figure 1.6, onto the polar ionosphere. This electric field drives strong 
east/west currents in the auroral region, called auroral electrojets. The auroral 
electrojets cause large magnetic disturbances at high latitudes. The sketch on the right 
shows the different currents in the ionosphere. Of these, the auroral electrojets (in blue) 
generate by far the largest magnetic field disturbances at high latitudes 
 

 

Figure 1.6: NASA ultraviolet image of the auroral zone in which the electrojets flow.  

 
Secondary Induced Magnetic Fields 
 
Finally, any time-varying disturbances in the magnetic field induce electric fields in the 
Earth and oceans. These electric fields generate electric currents and secondary 
magnetic fields. Such “induced magnetic fields” make up approximately one-third of 
the disturbance field. Conductivity inhomogeneity’s within the Earth, as well as the 
contrast between the solid Earth and oceans, gives rise to complicated spatio-temporal 
structures of the disturbance field, necessitating real-time measurements in the vicinity 
of the drillsite. 
 

1.3 Regulations and Standards for Directional Drilling 

There are several standards, rules and regulations for directional drilling. The Industry 
Steering Committee for Wellbore Survey Accuracy (ISCWSA) developed a framework 
for quantifying positional errors through ellipses of uncertainty (EOU). The ISCWSA’s 
work resulted in an error model which is described in detail by Williamson (2000).  
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The Operator’s Wellbore Survey Group (OWSG), a sub-committee of the ISCWSA, 
continued development on the original error model and publishes a set of Instrument 
Performance Models that enable the computation of ellipses of uncertainty, discussed 
in more depth in Chapter 2.5, for specific surveying methods. This consolidated set is 
referred to as the OWSG set of tool codes. As better surveying methods are used, 
ellipses of uncertainty shrink, as shown in Figure 1.7 (Deverse, 2016). The figures 
show expected wellbores in middle, surrounded by pink ellipses of uncertainty 
representing a good surveying method, surrounded by blue ellipses of uncertainty 
representing a poor surveying method. 
 
 

 

Figure 1.7: Simulated ellipses of positional uncertainty 

 
The American Petroleum Institute (API) is working on a document of recommended 
practices (RP 78) for wellbore surveying. 
 
On the Norwegian Continental Shelf (NCS) the Activity Regulations apply and the 
NORSOK standard includes guidelines on how to ensure a proper directional survey 
of a wellbore. 
 

1.3.1 The Activities Regulations 

The Activities Regulations apply to offshore petroleum activities and are issued and 
enforced by the Petroleum Safety Authority, the Norwegian Environment Agency and 
the health authorities. Section 82 "Well location and Wellbore" in the Activities 
Regulations states that "The well location and wellbore shall be known at all times and 
selected based on well parameters of significance for a safe drilling and well activity". 
 

1.3.2 NORSOK D-010 

The NORSOK D-010 is a standard defining the requirements and guidelines to well 
integrity in drilling and well activities. In the standard, it is stated that a precise 
determination of the well path is important to: 
 

• avoid penetrating another well, 

• facilitate intersection of the wellbore with a relief well (blowout), 

• facilitate geological modelling, 

• facilitate anti-collision assessments for new wells. 
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It is further specified that: 
 

• The position of the wellbore being drilled (reference well) and the distance to 
adjacent wells shall be known at all times. The minimum angle of curvature 
method or other equivalent models should be used. 

• A survey program should be established to minimize ellipses of uncertainty. 

• Procedures for quality control of survey data shall be in place. The ellipses of 
uncertainty shall be based on survey tool error models which reflect the level of 
quality control applied. 

 

1.4 Scope of Work 

The objective of this study is to present challenges related to positional uncertainties 
for directional drilling using MWD in the Barents Sea, especially for horizontal 
wellbores. Mitigating solutions to these challenges are presented.  
 
The study first summarizes the relevant literature and characterizes the expected 
random and systematic errors encountered in surveying by standard MWD in the 
Barents Sea. It then assesses the availability of suitable aeromagnetic data for In-Field 
Referencing (IFR) crustal anomaly corrections. Turning to the disturbance field, the 
available geomagnetic ground stations are assessed and mitigation methods 
compared, including Interpolated In-Field Referencing (Williamson et al., 1998), the 
Disturbance Function method (Maus and Poedjono, 2015) and the deployment of an 
ocean bottom magnetometer at the drill site. An example comparing these methods for 
a pair of geomagnetic observatories in Alaska is shown in Figure 8.4 in Appendix. The 
impact of these methods as a function of distance from the drill site are analyzed using 
triplets of geomagnetic station measurements around the Barents Sea. Finally, the 
impact on wellbore placement accuracy is compared for the different methods in 
relation to the uncorrected MWD surveys. 
 
The results of this study will be useful to both operators and regulators in the Barents 
Sea, as they provide metrics on how well various crustal and disturbance field 
mitigation methods perform in the region. More specifically, the study presents 
recommendations for different sub-regions in the Barents Sea, allowing an operator in 
a particular location to use the proper mitigation methods in order to ensure safe 
operation. 
 
More broadly, the results of the study will be useful to the industry at large. Despite 
having focused on the Barents Sea region, the study’s results will outline general trends 
with regards to the performance of different mitigation methods relative to one another, 
and be roughly applicable anywhere. 
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2. Measurement While Drilling 

2.1 General 

Well placement by MWD uses magnetic field measurements to infer the orientation of 
the BHA and the direction of the wellbore. MWD is a critical component of directional 
drilling and collisional avoidance as well as reaching geologic targets. MWD provides 
constant feedback on the location of the bend in the motor enabling steering control 
and, at intervals, updates on the direction the wellbore is pointed. At high latitudes, the 
horizontal component of the geomagnetic field is reduced, which increases the effect 
of internal interference from the drill string and external interference from crustal 
magnetic anomalies and ionospheric disturbance fields. MWD errors are particularly 
problematic for horizontal wells, warranting attention to these technical components.  
 
Technologies such as In-Field Referencing (IFR), Multi-station Analysis (MSA), and 
disturbance field monitoring can improve MWD outcomes. IFR greatly improves the 
accuracy of geomagnetic reference declination, which can reduce positional 
uncertainty more than 30 percent. Reliable geomagnetic reference values given by IFR 
further provide the basis for MSA, the most cost-effective solution for correcting 
standard MWD surveying and substantially improving the wellbore accuracy (Maus et 
al. 2017) that has consistently challenged drill operators in recent decades (Grindrod 
et al. 2016). MSA survey quality control is highly effective at identifying gross errors 
and reducing systematic errors. This can further reduce uncertainty, achieving total 
reductions by as much as 60 percent compared with standard MWD surveying. In 
addition, disturbance field monitoring can be used to successfully account and correct 
for temporal variations of the geomagnetic reference field. 
 

2.2 Directional Drilling 

With the advent of modern drilling technologies, there has been a rise in the frequency 
and type of non-vertical drilling operations performed. Intentional deviation of a 
wellbore can be used to achieve a wide variety of aims that would otherwise be 
uneconomical, or not feasible from an engineering perspective. Some applications of 
directional drilling include: 
 

• Drilling to a target located under an inaccessible surface location 

• Drilling to several targets from the same surface location 

• Drilling to multiple targets with the same wellbore 

• Maximizing reservoir contact area in a horizontal wellbore 

• Performing sidetrack operations 

• Drilling relief wells 
 
Many methods are currently in use to perform intentional deviation of a wellbore. 
Techniques such as jetting (using fluid to asymmetrically wash out the wellbore) and 
whipstocks (metal wedges installed in a wellbore used to deflect the drillstring) have 
been in use since the mid-1900s, however their use is typically limited to only the initial 
deviation of the well, after which rotary drilling was still performed. It was only with the 
advent of bent-housing mud motors and rotary steerable systems that complex 
directional control could be performed continuously throughout the drilling process. 
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Drilling motors operate by using hydraulic pressure from the drilling fluid to rotate the 
bit. This enables it to steer while the drill string is rotating. This drilling mode is referred 
to as "sliding". The addition of a bent housing in conjunction with the motor means that 
there will be an inherent bias in the direction drilled when the motor is in this sliding 
mode. As long as the slide is continued, the path of the well will build in the direction 
of the bend making a smooth arc. Once the desired angle is reached, the motor can 
be rotated similar to a classic drilling scenario, and the bias tendency is equally 
balanced among all directions. By switching between the sliding and rotating modes, 
the directional driller can use the bent motor to actively steer the well as needed to 
keep the wellpath on the plan. Critical to this operation is an MWD tool, which provides 
not only the current orientation of the bottom hole assembly (BHA) but also the 
rotational angle in which the bend is oriented (tool face angle).  
 
Mud motors provide the advantage of having high dogleg capabilities (strong curvature 
of the well bore) and being mechanically robust. One drawback to the motor system is 
that while sliding is being performed there is no rotation of the drillstring, limiting the 
effectiveness of hole-cleaning efforts and at times making it challenging to transfer 
weight all the way to the bit.  
 
A modern alternative to mud motor drilling is the rotary-steerable system (RSS). RSS 
tools combine a directional package similar to that of an MWD with an automated 
control unit capable of deflecting the bit downhole. Unlike a motor, where a directional 
driller must be actively steering the well, the RSS directly integrates the sensor and 
steering modules in a closed loop system. The ability of the RSS to respond 
dynamically to motion in the bottom hole assembly enables it to continue steering even 
while the drill string is rotating. Based on commands transmitted to the downhole 
computer through mud flow, the RSS can be set to either steer, drill straight, or perform 
a more complicated action such as hold a heading. The constant rotation of the drill 
string means that there are fewer concerns with weight transfer and hole-cleaning. 
However, the mechanical complexity of RSS systems tends to add expenses relative 
to mud motors, and there can often be operational limitations to the drilling environment 
(such as flow rate, temperature and pressure) that limits their use. 
 

2.3 Well Placement 

In order to steer a well to a target, it is necessary to plot the trajectory of the wellbore 
as it is being drilled. Placing wellbores accurately to begin with will have a positive 
impact on field development and increase the feasibility of future infill drilling programs. 
An online simulator of recovery losses due to inaccurate wellbore positioning (Maus 
and DeVerse, 2016) can be used to assess the economic benefits of accurate drilling 
and compare the effects of different surveying methods. 
 
Modern surface surveying techniques such as differential GPS are ineffective in 
subsurface applications, and instead a variation on the surveyor’s traverse is 
employed. Measurements known as "survey stations" are taken at periodic intervals 
along the wellbore (typically 10 m -30 m). These survey stations consist of an along-
hole depth measurement, a measurement of deviation from the vertical, called 
inclination, and a measurement of the borehole’s direction relative to a north reference, 
known as azimuth. In between consecutive survey stations, change in position is 
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calculated using the minimum curvature method, where it is assumed that any angular 
change between consecutive stations happened in an equally distributed manner along 
the intervening length. This method allows a well path to be constructed in a piecewise 
fashion from a known well reference point (tie-in point). 
 
The additive nature of the minimum curvature traverse means that any error in the 
starting point will be carried through each additional iteration. Furthermore, any errors 
in the subsequent measurements will continue to be inherited by all future 
measurements. In surveying terms this is what is known as an “open traverse” meaning 
that there is no tie-off to verify the amount of error at the end of the process. The net 
result is that each survey station in a wellbore survey is associated with an amount of 
positional uncertainty that grows as the well is drilled deeper. These uncertainties can 
be mathematically described through a positional covariance matrix, but more often 
represented as ellipses of uncertainty. 
 

2.4 Magnetic Surveying Instruments 

During the drilling process, most wellbore surveys are conducted by MWD tools using 
a directional sensor with 3 perpendicular accelerometers and 3 perpendicular 
magnetometers. The triaxial accelerometers allow for measurement of the total 
gravitational field, which can be used to determine the instrument’s inclination from 
vertical and gravity tool face. The accelerometers and magnetometers together are 
capable of measuring the horizontal component of the Earth’s magnetic field, which 
can be used to produce a compass direction for azimuth. These technologies are easy 
to ruggedize and are able to acquire survey measurements in less than a minute, 
making them well suited for drilling applications.  
 
There are several limitations to surveys performed by magnetic MWD instruments. 
First and foremost, is that the Earth’s Magnetic Field is neither static, nor perfectly 
aligned with the axis of rotation. An MWD survey measurement provides the orientation 
of the tool relative to the local magnetic field, however wellbore positioning applications 
must relate this to a map system of some kind. This requires correcting the MWD 
survey for a reference magnetic declination. This declination correction cannot be 
internally verified, so care must be taken to ensure the appropriate magnetic model is 
being used in the appropriate manner.  The high geomagnetic latitude of the Barents 
Sea means that the horizontal magnetic field is weaker than in many other areas where 
drilling is typically undertaken. This makes the declination more susceptible to large 
changes over time, and more likely to be impacted by local geologic anomalies. The 
local declination can have its accuracy greatly improved by mapping the local spatial 
and temporal variations and incorporating them into a high-resolution real-time model.  
 
A component of the Earth’s magnetic field that cannot be accurately modelled in 
advance is that from solar disturbance. Space weather can cause short term variations 
in local fields with minimal warning time, particularly in areas near the magnetic poles. 
Just as with other magnetic model errors, any change in the magnetic declination will 
cause an undetectable error in the MWD sensor’s azimuth measurement. Proper 
accounting for these types of errors can only be done by constantly monitoring the 
magnetic field and applying the appropriate corrections to the survey measurements. 
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In addition to potential magnetic modelling error, the presence of magnetic interference 
can adversely affect the accuracy of MWD surveying. Any interference in the 
horizontal-East/West direction relative to the reference model will result in corruption 
of the survey azimuth. One major source of such corruption is ferromagnetic material 
in the drilling BHA. This is of particular concern as the steel components are located 
near the directional sensor for the entire duration of the drilling process.  The largest 
component of interference from the drill string is aligned with the borehole direction. 
Hence, the closer to horizontal and the closer to magnetic East/West the drilling will 
be, the greater the potential for corruption of the survey azimuth and the more non-
magnetic spacing that will be required.  
 
In terms of disturbance field variation, the collection of long-term electromagnetic data 
is critical to these variations over time. Unlike an aeromagnetic survey that is bound by 
a finite moment in time, remote observatories on land and the seafloor can provide 
datasets extending over long periods, allowing for the identification of time-bound 
anomalies that affect wellbore positioning and MWD operations. 
 
Placing, maintaining, and receiving data from a Sea Floor Electro-Magnetic Station 
(SFEMS) adds complexity to sub ocean directional magnetic MWD operations, yet the 
benefits of properly-placed wellbores are numerous (Maus et al. 2017). To more 
reliably predict the disturbance field at a drill site using in-situ measurements on the 
seafloor, three ocean bottom vector magnetometers (OBMs) must be deployed near 
the drill site to monitor the disturbance field over a period of 3-6 months (Maus et al. 
2015). This enables the computation of a disturbance function relating the 
measurements of multiple neighboring variometers.  
 
A recent development in robotic autonomous marine vehicles is the Wave Glider by 
Liquid Robotics (Monk et al. 2014), which also shows promising results for disturbance 
field monitoring. It can either directly measure variations in the total magnetic field, or 
it can act as a real-time satellite relay by using acoustic signals transponded to the 
vehicle from a seafloor magnetometer to the ocean-surface, and then sent by satellite 
to the desired location, allowing for real-time data collection (Poedjono, B., et al. 2014). 
The Waveglider and SFEMS are described in more detail in Appendix Section 8.7. 
 

2.5 Ellipses of Uncertainty 

In seeking to quantify the wellbore positioning accuracy, the important thing is the 
potential spatial error from each error source, including the accuracy of the BHA tool, 
the magnetic interference from drill string components, and the accuracy of the IFR (or 
other magnetic) model, among others. Each error source contributes in some form to 
the magnitude of uncertainty that propagates along the computed wellbore trajectory. 
For example, a dip uncertainty may be in degrees (˚), which must be transformed into 
spatial (feet or meters) uncertainty downhole.  
 
This spatial uncertainty, resulting from directional uncertainty, is quantified as an 
Ellipse of Uncertainty (EOU). This refers to a shape, elliptical in cross-section, 
surrounding the wellbore and showing the range of locations the BHA could actually 
be, based on the accuracy of methods used. These shapes are elliptical due to 
differences in propagation between z errors (along hole) and x/y errors (perpendicular 
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to the hole). They also grow larger downhole due to compounding uncertainty. EOU’s 
of neighboring wells must never touch, as this could result in a blowout if both wells’ 
actual positions were in the intersecting zone and higher pressure in one wellbore were 
transferred into the other. By using advanced wellbore placement techniques and 
thereby reducing the EOU’s, one can place the wells with higher confidence. 
Additionally, in the event of a blowout, it is necessary to drill a relief well with confidence 
of being able to intersect the blowing well.  
 
The Industry Steering Committee for Wellbore Survey Accuracy (ISCWSA) has 
developed a framework for quantifying the magnitude of uncertainty. The Operator’s 
Wellbore Survey Group (OWSG), an ISCWSA subcommittee, continued development 
on the original error model and published a set of instrument performance models that 
enables the computation of EOU for specific surveying methods (Appendix 
Section 8.7). This consolidated set is referred to as the OWSG set of tool codes. 
 
Figure 2.1 (Maus, SPE 175539) illustrates the difference between EOUs for standard 
MWD versus advanced corrections using MWD with IFR and corrections for sag 
(MWD+IFR1+SAG). Because the BHA is not perfectly rigid, and is slightly smaller than 
the borehole, gravity can pull down on various parts of the BHA and induce bending, 
bringing the accelerometer out of alignment with the inclination of the wellbore 
trajectory, as shown in Figure 2.2 (Studer et al. 2006). This effect is referred to as sag, 
and can be corrected for, which is encapsulated in the MWD+IFR1+SAG toolcode. The 
actual drilled wellbore trajectory is with 95 % confidence within the EOU of the selected 
surveying method. Generally, one can see that the large uncertainty of standard MWD 
can be reduced by 11 to 38 % by use of IFR, while further applying multistation analysis 
(MSA) can reduce the uncertainty by 50 to 61 %. Vertical uncertainty can also be 
reduced by advanced survey correction methods.  
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Figure 2.1: Comparison of the EOU at a standard deviation of 2.79 for 95 % 
confidence for the tool codes MWD (green) and MWD+IFR+SAG (red)  

 
 
 

 

Figure 2.2: Sag, the difference between measured and true inclination due to sagging 
of the BHA in the borehole, as borehole and BHA are not of exact same 
diameter 
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2.6 Collision Avoidance 

Increasing directional complexity of the wells being drilled, along with a greater number 
of wells being drilled from a single location, increases the risk that a well being drilled 
may intersect an existing well. The consequences of a collision have the potential to 
be severe, with possible negative outcomes including uncontrolled release of 
hazardous materials or loss of well control. Mitigating these risks requires putting in 
place a comprehensive collision avoidance risk management system. A key 
component in any such system includes proper handling of both wellbore positioning 
data and its associated uncertainties. 
 
The most common tool used across industry to manage collision risk is the separation 
factor (SF), which is often incorporated to a minimum allowable separation distance 
(MASD) rule. Calculating a separation factor involves comparing the distance 
separating the two wellbores to the amount of uncertainty in their relative positions. 
These distances are typically normalized based on the acceptable level of risk so that 
anything less than a ratio of 1 (where uncertainty is greater than separation) is deemed 
unacceptable. The greater the level of accuracy in the surveying process (i.e. lower 
uncertainty between the position of the well and its offset), the more likely it is that the 
drilling process can proceed safely. Implicit in the entire risk management system is 
that the survey measurements used to calculate the borehole position meet the 
assumptions that were made when performing the positional uncertainty calculations.  
  
There are numerous error sources associated with MWD survey measurements and 
each error source contributes in some form to the magnitude of uncertainty that 
propagates along the computed wellbore trajectory. The Industry Steering Committee 
for Wellbore Survey Accuracy (ISCWSA) framework mentioned in chapter 2.4 can be 
used to quantify the magnitude of uncertainty. A fuller description of the ISCWSA’s 
work can be found in the Appendix. 
 

2.7 Geological Targets 

The final endpoint of a well path is defined by a geological objective that, if penetrated, 
will allow the operator to economically produce hydrocarbons from the wellbore. This 
target is defined in advance by geological considerations and used when designing the 
well plan to be drilled. To assure that the well penetrates this target, the effective target 
size for considering deviation from plan must be reduced by the expected amount of 
positional uncertainty when the wellbore reaches total depth so that after accounting 
for survey uncertainty, the geological objectives are still met. This process is known as 
"Driller’s target erosion".  
 
The higher the level of surveying accuracy employed during the drilling process, the 
less target erosion occurs, and the greater flexibility there is in the drilling process. In 
some cases, standard surveying methods may produce a positional uncertainty that is 
larger than the initial geological target specified. Under this condition it may be 
technically impossible to meet the geological objectives through the geometric drilling 
process. In those cases, either a higher accuracy surveying method must be used or 
additional navigational information, such as from Logging While Drilling (geosteering), 
must be incorporated into the steering process. 
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2.8 Relief Well Drilling 

In some extreme cases, such as loss of well control or damage to the surface location 
of the wellsite, it may be necessary to drill a relief well. A relief well is a secondary well 
drilled to intercept the initial wellbore so that remedial actions may be performed. In the 
prototypical case, a relief well establishes communication with a well that is blowing 
out so that drilling fluid may be pumped restoring control of the initial well. As a large 
number of risk factors are all present simultaneously, relief well drilling can be one of 
the most complex operations performed in the oil field.  
 
Due to safety considerations, relief wells must be started at some distance from the 
primary wellbore and the uncertainty accumulated in the approach will typically not 
allow for direct drilling of an intercept. Instead, the relief well is drilled to the likely 
location of the blowing out well, and then ranging operations are performed to 
determine the relative positions of the two wells. From that point, directional drilling can 
be guided with these relative locations until an intercept is achieved.  
 
Survey accuracy is of particular importance when performing relief well operations. The 
detection radius for ranging tools can be limited, and to maximize the possibility of 
success the uncertainty in both the initial well and the relief well should be minimized 
using high accuracy surveying techniques. Ranging instruments also rely on detecting 
small disturbances in the magnetic field to identify the location of the well casing. 
External disturbances can mask this signal if not corrected for, reducing the 
effectiveness of the ranging equipment. Inability to locate the blowout well using 
ranging techniques, or locating the well in a position that is far from the surveyed 
location may require multiple sidetracks to be drilled, adding days or weeks to the relief 
well operation. Given that surveying operations generally cannot be performed on a 
subject well after the blowout has occurred, it is important to already have high 
accuracy surveys while drilling to be prepared for the event that intersection by a relief 
well becomes necessary. 
 

2.9 Global Field Models 

Global models of the geomagnetic field vary in accuracy and are produced by different 
organizations. The main difference between the models is how often they are updated 
(yearly or every 5 years) and their spatial resolution. However, they do all operate on 
the same basic foundation, namely a spherical (or ellipsoidal) harmonic expansion of 
the magnetic potential of a magnetic field originating in the interior of the Earth. The 
degree (N) of this expansion determines the resolution of the model. A spherical 
harmonic expansion in its typical form is given by: 
 

𝑉(𝜆, 𝜓, 𝑟) = 𝑎 ∑ ∑ (
𝑎

𝑟
)

𝑛+1
(𝑔𝑛

𝑚 cos 𝑚𝜆 + ℎ𝑛
𝑚 sin 𝑚𝜆)𝑛

𝑚=0 𝑃𝑛
𝑚𝑁

𝑛=1 (sin 𝜓), 

 
where V is the magnetic potential, λ is longitude, ψ is geocentric latitude, r is the 
distance from the Earth center, a=6371.2 km is the geomagnetic reference radius, n is 
degree, m is the order, g_n^m and h_n^m are the Gauss coefficients and P_n^m are 
associated Legendre functions. 
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The World Magnetic Model (WMM), produced in collaboration between the US National 
Geospatial-Intelligence Agency (NGA) and the UK Defence Geographic Centre (DGC) 
is a global main field model that is used as a world-wide standard for navigation and 
defense applications. It is updated every 5 years and the current model, WMM 2015, 
is valid until December 31st, 2019. WMM is a spherical harmonic expansion to degree 
12. This free model is widely used in directional drilling by smaller directional drilling 
companies. It fulfills the requirements of the OWSG tool code MWD+IGRF, as 
explained below.  
 
The International Geomagnetic Reference Field (IGRF) is a main field model 
comparable to the WMM. It is produced by scientists under the auspices of the 
International Association of Geomagnetism and Aeronomy (IAGA). Also updated every 
5 years, this main field model covers spherical harmonics to degree 13. As a free 
model, it is also widely used in directional drilling by smaller contractors. It fulfills the 
requirements of the OWSG tool code MWD+IGRF.  
 
Increasing accuracy slightly from these models are the standard definition (SD) models 
which fulfill the requirements of the MWD tool code. These are more accurate than 
IGRF and WMM through yearly updates and higher spherical harmonic degree. 
Examples of this type of model are the BGGM produced by the British Geological 
Survey (BGS) and the MVSD produced by Magnetic Variation Services (MagVAR). 
Both of these models include a steady external ring current field and parts of the long 
wavelength crustal magnetic field. The resolution of the BGGM depends on the 
calendar year, ranging from degree 8 to degree 133. Consequently, the BGGM 
represents different parts of the geomagnetic field depending on the date entered. The 
MVSD avoids this confusion by maintaining a constant degree 133 resolution for all 
dates ranging back to 1960.  
 
Finally, the most accurate global field models utilize an ellipsoidal harmonic expansion 
to more accurately represent the geometry of the Earth. These high definition (HD) 
models also increase the degree of expansion significantly. They fulfill the more 
stringent requirements of the MWD+HRGM tool code, as presented below. The first 
generation HDGM to degree 720 was developed at the National Geophysical Data 
Center (Maus et al., 2010) and is still being produced by its follow-on organization 
National Centers for Environmental Information (NCEI). A newer follow-on model 
MVHD to degree 1000 is based on improved ellipsoidal harmonic inversion techniques 
and is produced by MagVAR. The degree of a model can be compared with the pixel 
resolution of a camera. The WMM corresponds to a 12 x 12 pixel image, the BGGM to 
a 133x133 pixel image and the MVHD to a 1 Mega-Pixel image of the magnetic field 
of the Earth, with corresponding improvements in the resolution and accuracy. 
 
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA) produces 
a set of industry-standard error models under their Operator Wellbore Survey Group 
(OWSG) sub-committee. These error models, commonly called "tool codes", represent 
the expected uncertainties when using various technologies and methods. WMM and 
IGRF main field models fall under the MWD+IGRF tool code. Standard definition 
models with yearly updates qualify for use with the MWD tool code. Finally, high 
resolution models with ellipsoidal harmonic degree of 720 and higher are represented 
by the MWD+HRGM tool code. HDGM and MVHD satisfy or exceed this tool code. 
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Figure 2.3 shows the power spectrum of the internal geomagnetic field. Increasing 
degree (lower X axis) corresponds to the resolution of shorter wavelengths (upper X 
axis) of these common global models. Shaded areas represent models with changing 
degree and resolution. The latest BGGM extends to degree 133. The red shaded area 
corresponds to the part that is missing from the field model and is referred to as the 
omission error. 
 

 

Figure 2.3: Global power geomagnetic power spectrum 

 
To illustrate the different accuracy of various main field models, Table 2.1 gives 3-
sigma uncertainties for each OWSG tool code classified above. The declination values 
scale inversely with the strength of the horizontal component of the geomagnetic field. 
The smaller the horizontal component, the larger the uncertainty in declination. The 
values in the table have been calculated for a horizontal magnetic component 
characteristic of the Barents Sea. 
 

Table 2.1:  A representation of 3-sigma uncertainties for each OWSG tool code 

 
MWD+IGRF 

(WMM & IGRF) 
MWD 

(BGGM & MVSD) 
MWD+HRGM 

(HDGM & MVHD) 

Declination (degrees) 2.579 2.144 1.771 

Inclination (degrees) 0.72 0.6 0.48 

Total field (nanoTesla) 471 390 321 
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2.10 Crustal Anomaly Mitigation 

In-Field Referencing (IFR) is a catch-all for techniques measuring the geomagnetic 
field at the drilling location and creating a reference model (IFR model) from those local 
measurements. There are two types of IFR models. The first type is based on 
measurements of the direction and strength of the field, for example by a magnetic 
theodolite. The second technique is based on a total field magnetic survey covering at 
least 80 km x 80 km surrounding the drill site and transforming the total measurements 
into a 3D directional magnetic field model.  
 
IFR accounts for three of the four contributing factors of the magnetic field: main field 
(generated by Earth’s core), crustal field (magnetic minerals in Earth’s crust), shown in 
Figure 2.4 (Maus, 2017), and steady external field (generated by charged particles 
flowing in the earth’s atmosphere). The remaining contribution to the magnetic field is 
the magnetic disturbance field generated by electric currents in near-Earth space, 
described in the following section (Maus et al. 2017). IFR itself is presented in more 
depth later in this report. 
 

 

Figure 2.4: Earth’s magnetic crustal anomalies, represented as a raised 3D heatmap 
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2.11 Disturbance Field Mitigation 

The main motivation for disturbance field mitigation methods is to generate time-
varying geomagnetic field corrections for the local geomagnetic reference field by 
remotely monitoring variations of the earth’s magnetic field for specific time periods 
(Shiells et al. 2000, Edvardson et al. 2013). That is, in contrast to an IFR model which 
creates a spatial representation of the crustal magnetic anomaly for a certain area, 
disturbance field mitigation methods provide a source of reference for time-dependent 
variations of the magnetic field. This is a particularly relevant method to mitigate the 
disturbance field factors at higher latitudes, where time-dependent current fluctuations 
in the Earth's ionosphere cause inaccuracies in wellbore directional surveying 
(Edvardson et al. 2013). 
 
Interpolated In-Field Referencing (IIFR) is a method in which absolute local 
geomagnetic field data is obtained by location-specific measurement of the earth's 
magnetic field (Shiells et al. 2000). The data must be generated from a location 
sufficiently close and must be indicative of the earth's magnetic field at the drilling site. 
However, it must also be sufficiently remote from the drilling site that the measurement 
data is unaffected by magnetic interference from the drilling site itself and other man-
made installations (i.e. the drilling rig). 
 
A downhole magnetic field data is obtained by monitoring magnetic field variations in 
the vicinity of the borehole as well as at a series of locations along the borehole. The 
orientation of the borehole is determined from the downhole magnetic field data and 
the time-varying geomagnetic field data. Integrating these data sets through this survey 
method accounts for short-term variations in the geomagnetic field, which are caused 
by electrical currents in the ionosphere and magnetosphere, and the corresponding 
mirror currents induced in the Earth. 
 
For sub-ocean and offshore drilling operations where sheer distance from the shore-
based observatory previously limited drillers’ capability of maintaining directional 
accuracy (Williamson et al. 1998) the integration of IIFR methodology as well as the 
use of data generated from remote observatories has proven especially valuable 
(Macmillan et al. 2009). An implementation of IIFR was employed in the Norwegian 
Sea over a two-year period and is detailed in the Appendix. 
 
The disturbance field function (DF) is an alternative method to IIFR and addresses 
issues with the traditional methods through on-site deployment and non-real time 
collecting requirements. These prediction methods: (1) a simple linear interpolation 
between the surrounding stations using the traditional method of IIFR, versus (2) the 
DF method (Maus et al. 2015) will be described and systematically compared later in 
this report. 
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3. Challenges with MWD measurements in the Barents Sea 

Historically, most drilling has been carried out at lower latitudes. At high latitudes, such 
as those of the Barents Sea region, the horizontal component of the geomagnetic field 
is reduced, which increases the effect of internal interference from the drill string and 
external interference from crustal magnetic anomalies and ionospheric disturbance 
fields. Key challenges for drilling at high latitudes are the active management of 
magnetic interference from the BHA and drill string components as well as the accurate 
specification of the natural geomagnetic field as a reference to convert magnetic 
azimuth to true azimuth.  
 
MWD errors are particularly problematic for horizontal wells at these latitudes. In any 
area, the risks of horizontal drilling are numerous, warranting the development of 
unique technologies and calculation systems to increase directional accuracy and 
mitigate associated risk, including wellbore collisions, blowouts, and lease-line 
violations, while maximizing hydrocarbon extraction. However, the challenges of 
surveying at northern offshore sites like the Barents Sea are greater than elsewhere, 
as the opening of the Arctic Ocean to drilling operations has shown (Edvardson et al. 
2013).  
 
Wellbore surveying by MWD leverages the direction of Earth’s gravity and magnetic 
field as a natural reference frame to acquire these critical measurements (Poedjono et 
al. 2013). The horizontal component of the geomagnetic field is a particularly critical 
reference point when using magnetic north to identify azimuthal orientation of the 
borehole. The previously mentioned reduction in this component at arctic latitudes 
exacerbates any error sources collected during the survey. Based on the smaller 
horizontal geomagnetic component, there is an increased impact from axial and cross-
axial interference from the drill string and/or mud effects (ibid). Quite simply, BHAs that 
are magnetically acceptable in areas of lower latitude can lead to significant 
inaccuracies in the Arctic environments.  
 
Knowledge of the crustal field and real-time magnetic disturbance field is also critical 
to achieve an accurate wellbore position when drilling in the Artic. In the region, 
fluctuations in the geomagnetic field make the application of geomagnetic referencing 
more challenging and the correct implementation of geomagnetic referencing is 
particularly critical during the increased magnetic activity during the maximum of the 
11-year solar cycle (Poedjono et al. 2013). To combat this challenge, precise crustal 
mapping and the monitoring of real-time variations by nearby magnetic observatories 
is crucial to achieving the required geomagnetic referencing accuracy.  
 
Geographically, the Barents Sea is in the auroral zone, subject to solar winds as shown 
in Figure 3.1, an illustration of the Dungey cycle in the Earth’s noon/midnight meridian 
plane. The IMF (interplanetary magnetic field) field reconnects to the earth’s dipole field 
at 1, and the opened field lines are peeled back (2 through 4), and reconnected in the 
magnetotail (5). Closed flux is returned to the dayside (6 and 7). The magnetopause is 
indicated by a black dashed line. The northern and southern polar caps are north and 
south of red lines indicating open/closed field boundaries. The resultant two-cell 
ionospheric convection is shown in the lower subfigure, where blue dots correspond to 
numbered field lines in the main illustration. The auroral oval is represented by the 
green band and the open/closed field boundary by the red dotted line (Edvardsen et 
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al, 2013). These electric currents in the ionosphere of the auroral zone cause magnetic 
disturbances with more frequency and with larger amplitude than at any other latitude. 
Thus, the external-magnetic-field variations in the Norwegian Sea and Barents Sea 
areas were studied with special attention given to the declination (Edvardsen et al, 
2013). The findings were that declination offset at disturbed days for the Barents Sea 
observatories SOR and BJN were approximately 0.5 º. Calculating the effect on 
wellbore positioning, if the 4000 m long horizontal section is drilled during a period 
where 6 hours of the day are disturbed, approximately one-fourth of the horizontal 
section is affected by a 0.5 º error in the declination, if not corrected. The lateral 
displacement caused by this declination offset is approximately 9 meters, which is 
enough to cause concern warranting special attention by survey correction analysts 
(Edvardsen et al. 2013).  
 

 

Figure 3.1: Solar wind and the Dungey cycle 

 
Given these challenges unique to the region, the approaches presented in the sections 
that follow provide critical corrections to operations in the Barents Sea and 
corresponding risk mitigation. Employment of appropriate mitigation methods can 
provide the most useful resource in increasing directional accuracy and mitigating the 
disruptive effects of disturbance field anomalies on time-bound data. IFR and 
disturbance field mitigation methodology contributes to safer and more productive 
offshore operations at high latitudes (ibid), confronting the challenges of the Barents 
Sea. 
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4. Mitigation Methods 

4.1 General 

The anomalies in the earth’s magnetic field fall into two distinct types, each involving 
different techniques for detection and mitigation. Crustal anomalies are spatial, while 
disturbance field anomalies are temporal. 
 

4.2 Crustal Anomalies and Mitigation 

4.2.1 In-Field Referencing 

Standard MWD assumes the use of a global geomagnetic reference field which does 
not include local crustal magnetic anomalies. Long wavelength crustal anomalies are 
accounted for in global High Resolution Geomagnetic Models (HRGM). The technique 
of IFR further accounts for short wavelength crustal anomalies. In order to use IFR, 
high quality marine or airborne total field magnetic measurements have to be available 
for the region surrounding the drilling location. The case of the Barents Sea is no 
different, and MWD efforts must account for crustal anomalies originating in the 
oceanic crust.  
 
It should be noted that (in theory) it is also possible to create a 3D IFR model from 
vector magnetic measurements. However, taking oriented vector measurements at the 
ocean surface is very challenging. A large number of such measurements would have 
to be taken to trace the field lines into the subsurface and resolve the depth 
dependence of the magnetic field. We are not aware of any attempts to create a 3D 
IFR model from vector measurements. What is more common is to take single spot 
measurements of the magnetic field vector at the surface and assume that the field 
has no depth dependence. Such ground shots are also useful to validate or calibrate a 
3D IFR model derived from total field survey data. 
 
When producing a 3D IFR model from marine or aeromagnetic survey data, it is 
important to be aware that the input data set only specifies the total intensity of the 
magnetic field (Btotal), which can be thought of as the length of the magnetic field 
vector. Its direction has to be separately estimated by geomagnetic modeling. For a 
single location, the direction of the magnetic field cannot be inferred from the strength 
of the field alone. However, if the field is known in a sufficiently large area with complete 
2D coverage, the solution of Laplace’s differential equation for that area provides an 
estimate of the full vector of the geomagnetic field. To solve Laplace’s equation, the 
magnetic field vector is first represented as the negative gradient of a scalar magnetic 
potential 
 
𝑩 =  −𝛁𝑉 
 
Subsequently, Laplace’s differential equation: 
 
𝜟𝑽 =  𝟎 
 
is solved for the magnetic potential V.  
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A complication arising here that is frequently overlooked is that such a differential 
equation only has a unique solution if suitable boundary conditions are specified at the 
edges of the magnetic survey.  
 
The popular flat-Earth methods using Fourier transforms (e.g. Dean 1985; Russel 
Shiells and Kerridge, SPE 30452, 1995) or the equivalent source method (Dampney 
1969; Macmillan & Billingham, ISCWSA-40, 2014) implicitly assume that the potential 
is zero on the edges of the survey. Another way to phrase it is that they assume that 
all magnetic anomalies are completely contained within the local grid. Since the crustal 
field extends to very long wavelengths, and the peak of the spectrum is at about 300 km 
wavelength (see Figure 4.1), this assumption, while convenient, is entirely unrealistic. 
This can be demonstrated by a simple synthetic example (Maus, ISCWSA, London). 
 

 

Figure 4.1: Synthetic input data illustrating the effect of long wavelength magnetic 
anomalies on the local declination 

 
A 80 km x 80 km grid is usually considered a standard magnetic survey size for 
producing IFR models. To make it simple, assume the total field anomaly is zero 
throughout the grid (shown in Figure 4.1 in blue). Outside of the grid area, we assume 
a typical long wavelength crustal anomaly with 400 nT amplitude (red in Figure 4.1). 
Note that instead of assuming all of the anomalies to be inside the grid, this setup 
provides a counter-example, illustrating what happens if the anomalies are instead 
outside of the grid. Applying any of the commonly used flat Earth FFT or equivalent 
source methods to the grid will result in zero declination anomaly throughout the blue 
area because there is no information in that grid providing anything to the contrary, and 
the potential on the boundary is unknown and set to zero. If the differential equation is 
now solved accurately for the whole Earth ellipsoid using the technique described later, 
one can see in in Figure 4.2 that the magnetic potential (green) on the boundary is 
actually far from zero. This means that the implicit boundary condition of V=0 in practice 
leads to completely incorrect results. 
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Figure 4.2: Magnetic potential (green) for a synthetic example of total field anomaly 
data (blue) 

 
Figure 4.3 illustrates the corresponding declination anomaly in the area of the synthetic 
grid. While the flat Earth methods would predict a zero declination anomaly (blue), the 
true declination anomaly due to the long wavelength crustal field is over 1º in this 
example. It is well known that differential equations can only be solved with appropriate 
boundary conditions. This synthetic example illustrates that all of the flat Earth IFR 
methods commonly used to solve Laplace’s equation for the magnetic field without 
specifying boundary conditions will provide incorrect results. 
 

 

Figure 4.3: True declination anomaly (green) versus declination anomaly of zero 
provided by flat Earth methods (blue) 

 
The problem of unknown boundary conditions for the potential can be solved by 
eliminating the boundary and wrapping the grid around the Earth. That means we have 
to use regional magnetic data to extend the local survey into a global grid, while being 
aware that we only have the high-resolution data locally. The regional data are usually 
of lower quality, but still sufficiently specify the long wavelengths. To use an analogy 
from weather models: The commonly used flat Earth methods correspond to creating 
a local weather model assuming that no wind blows through the boundaries of the 
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model. A correct solution instead uses a global atmospheric weather model with locally 
enhanced resolution.  
 
To tie the local magnetic survey into the global crustal magnetic field, the first step in a 
more accurate method is to bridge the gap between the long-wavelength main field 
contribution and the short-wavelength aeromagnetic survey data with larger regional 
and satellite datasets. Integrating these regional data sets then means that a local flat 
Earth approximation is no longer appropriate. The only accurate solution is to use 
ellipsoidal harmonic functions. These enjoy widespread use in geodesy, where the 
global potential model EGM2008 is an ellipsoidal harmonic model.  
 
Since the Earth shape is best approximated by an ellipsoid of rotation, ellipsoidal 
harmonics are the most suitable functions to represent the geomagnetic field. These 
functions are defined (Maus, 2010) as 
 

𝑉(𝜆, 𝛽, 𝑢) = 𝑅 ∑ ∑
𝑄𝑛

𝑚 (𝑖
𝑢
𝐸)

𝑄𝑛
𝑚 (𝑖

𝑏
𝐸)

(𝑔𝑛
𝑚 cos 𝑚𝜆 + ℎ𝑛

𝑚 sin 𝑚𝜆)𝑃𝑛
𝑚(sin 𝛽)

𝑛

𝑚=0

𝑁

𝑛=1

 

 
where λ is longitude, β is reduced latitude, u is the semi-minor axis of the confocal 
ellipsoid at this location, R is the traditional geomagnetic reference radius, N is the 
degree of the expansion, and 𝑄𝑛

𝑚 and 𝑃𝑛
𝑚 are fully normalized associated Legendre 

functions of the first and second kind, respectively. E and b are the focus and semi-
major axis of the WGS84 reference ellipsoid. Finally, 𝑔𝑛

𝑚 and ℎ𝑛
𝑚 are the ellipsoidal 

harmonic model coefficients of the expansion, estimated by least squares from the 
input data for the area.  
 
The method of expanding a global magnetic grid into ellipsoidal harmonics gets rid of 
the problem of the boundary condition, so we can compute the IFR model as a global 
model with very high resolution locally in the area of interest. The advantage of this 
approach is to have only one model. Instead of adding local crustal anomaly 
corrections to global models, an ellipsoidal model extends to a very high degree and 
fills the entire spectrum without gaps. 
 
A detailed validation study of the ellipsoidal harmonic IFR algorithm was published by 
Poedjono et al (2012). Comparisons were further made between a large number of 
ground measurements with both the flat Earth and ellipsoidal harmonic solutions. 
Figure 4.4 shows that the ellipsoidal harmonic solution agrees significantly better with 
the ground measurements, reducing IFR errors by over 50 %. The ellipsoidal harmonic 
method gives significantly lower residuals. Also shown is the 1-sigma error model 
threshold for the ISCWSA MWD+IFR tool code the corresponding mean errors are 
shown in Table 4.1. The IFR values computed by the flat Earth method are about twice 
as large and fail the assumptions of the ISCW. 
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Figure 4.4: Validation of the Ellipsoidal harmonic method (blue) and Flat Earth method 
(red) against ground shots. 

 

Table 4.1: Root means square residuals between 40 ground measurements versus 
predictions from the Ellipsoidal harmonic method and the flat Earth method 

 
Ellipsoidal 
harmonic 

Declination 

Flat Earth 
Declination 

Ellipsoidal 
harmonic 

Dip 

Flat 
Earth 
Dip 

Ellipsoidal 
harmonic 
Total Field 

Flat Earth 
Total 
Field 

Actual Error 
(1 σ) 

0.096 ° 0.202 ° 0.043 ° 0.061 ° 38.4 nT 82.0 nT 

Error model 
(1 σ)   

0.19 ° 0.1 ° 50 nT 

 
 

4.2.2 Aeromagnetic Surveys Available for IFR in the Barents Sea 

The previous section described modeling methodology to produce accurate IFR 
models in the Barents Sea. In order to create the IFR model, however, one must start 
with input data of sufficient quality. Until recently, available aeromagnetic data for the 
Barents Sea consisted of surveys flown from 1970 to 1991, largely by the Geological 
Survey of Norway (NGU) and various others (Figure 4.5). The line spacing of these 
surveys ranged from 4 to 12 km. A tight line spacing is critically important to the 
accuracy of an IFR model to be built from the specified survey. This is because the line 
spacing directly affects the lower bound of the range of wavelengths that can be 
captured by the survey. In order to provide the same quality of IFR model as other 
regions use, aeromagnetic surveys with 1 - 2 km line spacing should be used. 
 
More recent surveys of the south Barents Sea were conducted by NGU at 2 km line 
spacing (Table 4.2). The BASAR surveys (06, 08, 09, 14; corresponding to year of 
survey) cover a large area off the coast of northern Norway. They replace the lower 
quality NGU-69, BAMS-85, and NGU-70 surveys that previously covered this area. The 
2 km line spacing is optimal for creating the highest quality IFR models for MWD 
operations. 
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Figure 4.5: Barents Sea available Aeromagnetic Surveys (Base image credit: 
Geological Survey of Norway) 
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Table 4.2: Aeromagnetic survey details for Barents Sea 

Year Area 
Operator, 
reference 

Survey 
Name 

Survey 
Height (m) 

Line 
Spacing 

(km) 

Length 
(km) 

1989 
Northern 
Svalbard 

N/A SEV-89 N/A N/A N/A 

1991 Svalbard Amarok/TGS SVA-91 900 7.5 27,800 

1988 Spitsbergen NGU SPA-8 1550 5.5 13,300 

1987 NW Barents Sea NGU BSA-87 250 4 - 8 34,000 

1970 SE Barents Sea NGU NGU-70 200 4 - 8 22,800 

1985 SW Barents Sea CGG BAMS-85 200 4 16,900 

1969 SW Barents Sea NGU NGU-69 200 4 26,200 

2009 
Western Barents 

Sea 
NGU 

BASAR-
09 

230 2 77,000 

2008 
Southern 

Barents Sea 
NGU 

BASAR-
08 

230 2 57,600 

2006 
Southeastern 
Barents Sea 

NGU 
BASAR-

06 
230 2 30,000 

2014 
Southeastern 
Barents Sea 

NGU 
BASAR-

14 
230 2 44,000 

1997/1998 
Andfjorden and 

Harstad 
StatoilHydro 

HRAMS-
97/98 

150 1 7,000 

 
Aeromagnetic data are not available east of approximately 32 ˚ East longitude. 
However, the available data does cover most active oil and gas locations in the Barents 
Sea. IFR models can be provided in all areas covered by the BASAR surveys with a 
high degree of confidence. Additionally, areas uniformly covered by 4 km line spacing 
(for example, SW corner of BSA-87) could be included in an IFR model as well. A buffer 
of at least 10 km from the edge of the input data should be included to avoid edge 
effects. For reference, Figure 4.5 and Table 4.2 show coverage areas and line spacing 
for the surveys presented. 
 

4.2.3 Barents Sea Study 

For the purposes of this study, a location in the Barents Sea was evaluated assuming 
mediocre input data from older NGU surveys (4 km line spacing, 200 m survey height). 
Below are the 3 sigma uncertainties at varying depths. The parameters relevant to the 
estimates of uncertainty are given in Table 4.3. Uncertainties in the declination, 
inclination, and total field are then summarized in Table 4.4 to Table 4.6. 
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Table 4.3:  Parameters relevant to the assessment of uncertainties 

Parameter Value Relevant for uncertainty contribution of 

Horizontal field strength 8,119  nT Main, crustal and disturbance field 

Vertical field strength 54,867  nT Main, crustal and disturbance field 

Aeromagnetic survey altitude 200 m above MSL Crustal field 

Nonmagnetic layer thickness* 4000 m Crustal field 

Water depth** 188 m Crustal field 

Aeromagnetic data resolution 4 km Crustal Field 

Corrected geomagnetic latitude 71.5° Disturbance field 

Absolute measurement available Yes Crustal Field 

*Note:  It is assumed here that the layer down to a depth below sea level of 4000 m is non-magnetic. 
An average TVD for Barents Sea of 3500 m was combined with a 500 m margin for this 
estimation.  

**Note:  Water depth was determined with the NGDC ETOPO1 model at our test location. 

 

Table 4.4: Declination uncertainty (3 sigma) 

Depth (m) Main field (°) Crustal field (°) Disturbance field (°) Total (°) 

0 0.24 0.36 1.2 1.29 

500 0.24 0.36 1.2 1.29 

1000 0.24 0.36 1.2 1.29 

1500 0.24 0.36 1.2 1.29 

2000 0.24 0.39 1.2 1.29 

2500 0.24 0.42 1.2 1.29 

3000 0.24 0.48 1.2 1.32 

3500 0.24 0.6 1.2 1.38 
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Table 4.5: Dip Angle uncertainty (3 sigma) 

Depth (m) Main field (°) Crustal field (°) Disturbance field (°) Total (°) 

0 0.09 0.09 0.33 0.33 

500 0.09 0.09 0.33 0.36 

1000 0.09 0.09 0.33 0.36 

1500 0.09 0.09 0.33 0.36 

2000 0.09 0.09 0.33 0.36 

2500 0.09 0.12 0.33 0.36 

3000 0.09 0.15 0.33 0.36 

3500 0.09 0.18 0.33 0.39 

 

Table 4.6: Total field uncertainty (3 sigma) 

Depth (m) Main field (nT) Crustal field (nT) Disturbance field (nT) Total (nT) 

0 55.5 60 242.7 255.9 

500 55.5 60.6 242.7 256.2 

1000 55.5 61.8 242.7 256.5 

1500 55.5 64.8 242.7 257.1 

2000 55.5 69.9 242.7 258.6 

2500 55.5 78.9 242.7 261 

3000 55.5 94.8 242.7 266.4 

3500 55.5 122.4 242.7 277.5  

 
 
To further understand the magnitude of the above uncertainties, one must compare 
them to other crustal mitigation methods. The ISCWSA/OWSG tool codes of interest 
to crustal mitigation are MWD and MWD+IFR1. These two tool codes and their 
associated global uncertainty values are shown in Table 4.7, as given by OWSG. The 
MWD tool code assumes the use of a standard-definition main field model with yearly 
updates. Therefore, BGGM qualifies for use under the MWD tool code. 
 
The MWD+IFR1 tool code makes no assumptions on the IFR modeling methods or 
resolution. It simply defines the uncertainties that the model is expected to achieve. 
Any number of IFR solutions could therefore qualify for this tool code under ideal 
conditions. However, with the unique challenges that the Barents Sea presents, inferior 
methods that utilize plane grid assumptions or spherical harmonics will likely exceed 
the MWD+IFR1 tool code.  
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The ellipsoidal harmonics method described in this section has been evaluated at the 
Barents Sea location and uncertainty estimates are shown above. Combining (adding 
in quadrature) the main field and crustal field values at depth gives the values in the 
final column of Table 4.8. These values depend on the sediment thickness and 
ultimately the depth to magnetic basement, which is estimated here at 4000 m. They 
are well within the MWD+IFR1 tool code, despite the high-latitude Barents Sea location 
and the less dense 4 km line spacing.  
 
It was suggested earlier that a tighter 1-2 km line spacing be flown over any areas 
where wellbore placement is critically important. Areas of the Norwegian Sea are 
surveyed in this detail and a tighter spacing could further improve the uncertainties 
shown using the ellipsoidal harmonics method. It is also important to note that the 
ellipsoidal harmonics method exceeds the MWD+IFR1 tool code at all depths, not only 
at surface. Care should be taken when selecting IFR providers that the tool code is met 
everywhere. Some may only consider surface uncertainties when comparing against 
tool code. 
 

Table 4.7: OWSG error model global values (1-sigma) 

 MWD MWD+IFR1 

Declination - Global (degrees) 0.36 0.15 

BH-Dependent Declination - Global (degrees*nT) 5000 1500 

Magnetic Dip - Global (degrees) 0.2 0.1 

Total Magnetic Field - Global (nT) 130 50 

 

 
 

Table 4.8: Comparison of crustal mitigation methods (3-sigma uncertainties) 

 OWSG MWD OWSG MWD+IFR EH Method (4 km line spacing) 

Dec (degrees) 2.143771 0.714942 0.64622 

Dip (degrees) 0.6 0.3 0.201 

Btotal (nT) 390 150 134 
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4.3 Geomagnetic Disturbance Field Mitigation Study 

The geomagnetic disturbance field is a major source of directional error. It also affects 
the ability to quality-control MWD survey data. An effective disturbance field correction 
is therefore required for accurate and reliable wellbore placement. Such a capability is 
of particular importance in case a relief well has to be drilled in response to a well 
control event. 
 

4.3.1 Global Climatological Models of Magnetic Disturbance 

Global climatological models of the geomagnetic field were first developed by Sabaka 
et al (2002, 2004, 2015) at NASA. The idea is to use an extensive data set of satellite 
and ground observatory magnetic measurements over many decades and compile a 
model that then predicts the magnetic field at any given location and time. To account 
for temporal variations of external fields originating in the magnetosphere and 
ionosphere, the model is driven by time-varying indices, such as the Disturbance 
Storm-Time (DST), solar flux (F10.7) and interplanetary magnetic field (IMF Bx, By, 
Bz). The NASA Comprehensive model is available as software from NASA/GSFC.  
 
Similar models are also available from other organizations. While these climatological 
models offer a reasonable approximation of the disturbance field at mid latitudes during 
magnetically quiet periods, they are known to perform poorly during disturbed periods, 
in particular at higher latitudes. In order to evaluate the utility of such climatological 
models for directional drilling, the performance of NASA’s CM4 model was compared 
against a global data set of geomagnetic observatory measurements from 1995 to 
2012. The results are shown in Figure 4.6 for magnetically quiet conditions. While the 
corrections offer some benefit at low latitudes, their effect is almost negligible at high 
latitudes where the disturbances have the largest impact.  
 
In Figure 4.7 the results are seen for magnetically disturbed conditions, as given by a 
planetary magnetic disturbance index (Kp) of greater than or equal to 6. During such 
magnetic storms the declination improvement becomes even smaller, while the 
correction offers a substantial benefit for predicting the dip and total field disturbances 
at low latitudes. As can be seen, such a climatological model only provides a 
disturbance field reduction of the order of 10 %, which makes it unsuitable for use in 
directional drilling. The IFR2 error model tool code for disturbance field corrected data 
assumes that the mitigation method removes about 75 % of the disturbance field, 
which is unrealistic using global climatological models, but can indeed be achieved by 
the local methods described below. 
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Figure 4.6: Magnitude of the global magnetic disturbance field (1 sigma) shown as 
the uncorrected residuals (black), after correcting for the magnetosphere 
(blue), the ionosphere (green) and both (red). 

 

 

Figure 4.7:  Same as Figure 4.6, but limited to disturbed times with planetary Kp index 
> 6 
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4.3.2 Prior Work - Nearest Observatory 

A study presented in 2014 at the Offshore Technology Conference (OTC) (Poedjono 
et al., 2014) characterized the geomagnetic disturbance fields at high latitudes by 
analyzing more than a decade of geomagnetic ground station measurements. Apart 
from estimating the magnitude of the disturbances, the study also derived the expected 
remaining errors after correcting for disturbance fields using the nearest geomagnetic 
observatory. Generally speaking, to reduce the disturbance field by 75 % (in other 
words, to get to 25 % error remaining) requires an observatory within about 60 km of 
the drill site, as illustrated in Figure 4.8 below. The accuracy of this method is low, as 
no interpolation is performed, and the disturbances at the observatory location may 
differ substantially from those at the location of interest. However, the nearest 
observatory method is often used because it is simple to implement and offers 
improvement over using no disturbance mitigation at all. 
 

 

Figure 4.8: Remaining error in the total field, dip and declination after subtracting the 
disturbance field, plotted against the distance of the observatory from the 
drill site 

 
The earlier study assumed that the data from the nearby observatory would be used 
without any extrapolation to the drill site or any interpolation between several 
observatories. In this study, interpolation methods are examined, and this previous 
analysis is extended to include advanced disturbance field correction methods, 
showing much longer-range efficacy. 
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The other disturbance error mitigation methods that will be presented are Real-time 
Local Observatory, IIFR, and DF. The local observatory requires physical equipment 
with a real-time link, IIFR builds on the non-extrapolated, single-observatory method 
by adding data from a second available observatory and performing extrapolations, 
and DF uses a second observatory as well as past local data in order to come up with 
extrapolated real-time local data. 
 

4.3.3 Real-Time Local Observatory 

The real-time local observatory method involves placing a physical magnetometer 
within a few km of the drill site. This has been successfully done offshore in Japan as 
an ocean-bottom deployment for scientific studies, as well as in Canada and Texas as 
surface deployments. Essentially, a magnetometer is set up with power connection and 
real-time data transmission and placed as close to the drill site as possible without 
picking up interference from the steel infrastructure involved in drilling. Because it is 
placed locally, there is no extrapolation needed, and as long as the device is properly 
set up and calibrated, the data can be understood to perfectly predict the disturbance 
field at the drill site. This is the ideal disturbance mitigation method, but often it is not 
feasible due to cost, logistics, time constraints, magnetic interference from passing 
vessels, the difficulty involved in seafloor deployments, or the like. 
 
Although a local magnetometer is required for both the local observatory and 
disturbance function methods, a disturbance function implementation is far less 
expensive. To use a local magnetometer by itself, a real-time link must be somehow 
established. This can be in the form of a wave-glider that picks up sonar pulses from 
the magnetometer, a hard-wired cable to the rig, or a cable to an above-water satellite 
uplink. These are difficult and expensive to implement in ocean-bottom situations. The 
disturbance function, however, does not require a real-time link, so one can simply 
leave the magnetometer on the ocean bottom for a couple months, retrieve it, process 
the data, and move on to creating the function. Compared to establishing and 
maintaining a real-time link, this can be more cost-effective by an order of magnitude. 
 

4.3.4 Interpolated In-Field Referencing 

Interpolated In-Field Referencing (IIFR) is a method that can be implemented using 
existing observatory infrastructure and may be used quite effectively anytime there are 
two available magnetometers or variometers within approximately 300 km on both 
sides of the drill site. If there is no observatory on an opposite side, then IIFR essentially 
defaults to using the nearest observatory, which provides a relatively poor correction. 
As previously shown, non-interpolated values from nearby single observatories are 
already used in many oil fields. If there is a second observatory within reasonable 
distance on the opposite side of the drill site, implementing interpolation by IIFR can 
be an attractive option. 
 
For each downhole survey time stamp, the values for Bx, By, and Bz are gathered from 
each of the two or more proximate observatories and the disturbance field is separated 
from the main and crustal field. These residual disturbance field measurements are 
then transformed into declination, dip, and total field disturbances. To synthesize 
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values for those three quantities at the location of concern, a weighted average is 
performed. 
 
For each remote observatory used, the disturbances are split into low- and high-
frequency parts with low- and high-pass filters, and each is multiplied by a weighting 
function. The low-frequency part is further phase-shifted to account for longitudinal 
differences between the remote observatory and the location of concern. These 
weighting functions and pass filters depend on the region of earth as well as the 
geometry of the stations. The weighted values for each remote observatory are then 
summed to provide a synthesized local magnetic vector (Shiells et al. 1997). 
 

4.3.5 Disturbance Function 

The Disturbance Function (DF) method addresses some major short comings of the 
IIFR method. The IIFR method assumes that the magnetic disturbances can be 
estimated by a simple spatial interpolation between surrounding observatories. This 
leads to two problems: 
 

1. The surrounding observatories may not be ideally situated on both sides of the 
drill site. 

2. The disturbance field varies with the conductivity of the sub-surface. 
Observatories placed on resistive land masses record variations that can differ 
significantly from the disturbances on the sea bed, surrounded by conducting 
sea water, sediments and oceanic crust. This is even a problem on land, where 
observatories located on geological units with different electrical conductivity 
display different disturbance fields. In fact, these variations in the disturbance 
field are used in the method of geomagnetic depth sounding to map the 
conductivity of the sub-surface.  

 
The DF addresses both issues by using by first deploying a mobile observatory at the 
land or ocean bottom location in the vicinity of the drill site. The disturbance field at the 
drill site is then recorded for about 3 months and is then used as a "learning data set" 
to compute the disturbance function parameters between any surrounding 
observatories and the drill site. The DF parameters can be computed for any possible 
permutation of input observatories, providing maximum flexibility in case of outages of 
any of the surrounding stations. Since the data of the mobile observatory is not required 
in real-time, it can be placed on the sea floor and record the data to memory only. This 
significantly reduces the cost and logistical difficulties of such a deployment. Indeed, 
such mobile observatories are readily available for both land and sea floor 
deployments. 
 
The equations for estimating and applying the DF method are provided in the patent 
by Maus and Poedjono (2014). The general outline of the process is as follows: 
Beginning with a period of data for both the location of concern and the remote 
observatories, a Fourier transform is performed. This takes the data from the time 
domain to the frequency domain, revealing the occurrence of various-wavelength 
magnetic disturbances in the data. Complex weighting coefficients are then found for 
each wavelength to get the ultimate combination to closely approximate the phase and 
amplitude of the disturbances at the location of concern. This is similar to IIFR in that 
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it weights the data available from other observatories in order to attempt to interpolate 
the values at the location of concern, but goes much further. The geometry of the 
situation is considered, as well as the conductivity of the subsurface, as different 
conductivity profiles lead to higher or lower damping of different frequencies. 
Ultimately, a solution is sought which best matches waveform amplitudes and phase 
shifts at the location of concern. This method also works very well if only one input 
observatory is available. Any modulations in the amplitude and phase of the 
disturbances between the observatory and drill site are then optimally accounted for. 
 
Once the DF parameters have been estimated in the form of a set of complex 
coefficients to correspond with each frequency, the DF method can then be used at 
any past and future time to approximate the disturbance field at the location of concern. 
In an operational implementation, the DF method uses data feeds from the surrounding 
observatories to predict the disturbance field at the drill site in real-time. 
 

4.3.6 Barents Sea Simulation Study 

A large amount of magnetic data from both observatories and variometers is publicly 
available for a variety of scientific and technical applications. Unfortunately, many of 
these data have significant issues, such as unreliable baselines and baseline jumps. 
Significant effort was therefore spent to derive a corrected and validated data set of all 
available global 1-minute data from 1995 through 2012. These were used here in a 
large-scale simulation study to characterize and compare the performance of the 
nearest observatory, IIFR and disturbance function methods. The locations of all 
observatories and variometers in the data set are shown in Figure 4.9.  
 
Recently, some observatories and variometers have also started reporting 1-second 
data. However, this leads to very large data sets which are beyond the scope of this 
study. Furthermore, depending on the data transmission method used, downhole 
surveys can usually only be timed accurately to within about 1 minute, so that minute-
averages are considered an appropriate choice of temporal sampling. 
 
Because the study was carried out on observatory data from 1995 through 2012, some 
of these stations are no longer available for use, and some new stations have been 
added. Figure 4.10 below shows all Barents Sea region observatories that should be 
available for use going forward.1 

                                            
1 Data are available from http://flux.phys.uit.no/map/, http://geomag.gcras.ru/obs.html, and 
http://www.ava.fmi.fi/image/realtime/UT/ 
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Figure 4.9: Locations of magnetic observatories with publicly available data 

 

 

Figure 4.10: Magnetic observatories applicable to the Barents Sea 
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In order to characterize the extent by which the disturbance function and IIFR methods 
reduce the disturbance error, all station triplets above 50˚ latitude among whom no two 
were farther apart than 600 km were identified. This subset of stations is shown in 
Figure 4.11. The list of selected stations is given in the Acknowledgements section, 
with acknowledgement of the organizations running these stations. 
 
The Nearest Observatory, IIFR and DF correction methods were then applied to each 
triplet of stations. 600 km was chosen for a couple of reasons. First, as can be seen in 
Figure 4.10, that is the approximate distance at which it is no longer beneficial to use 
uninterpolated single-observatory disturbance data, which is the simplest default 
method. Second, this is approximately the distance from mainland Norway to the 
Svalbard archipelago, as well as the radius of the Barents Sea, so it is a good 
representative distance for this region. The triplets can be seen in Figure 4.11 as 
connected triangles.  
 

 

Figure 4.11: Triplets of stations (depicted as triangles) within 600km of each other upon 
which a disturbance simulation was performed. 

 
For any selected "target" observatory, mimicking the drill site, the other two 
observatories were used to synthesize disturbance values at that target location using 
the nearest observatory, IIFR and DF methods. 
 
After synthesis, residuals were taken by subtracting the synthesized value off the actual 
value, and then these residuals were split into systematic and random parts. The 
industry is concerned with both long-period (“systematic”) and short-period (“random”) 
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disturbance field variations. Here, we defined the systematic disturbance field 
contribution as the 3-day average residual, which may be considered representative 
for the time taken for a single downhole BHA run. The random variation is then defined 
as the per-minute deviation from that running mean.  
 
Statistics were performed on the absolute values of these residuals in order to 
determine the confidence intervals expectable through each method. It is important to 
note that while a 3-sigma value is generally used to calculate 99.7 percent confidence 
intervals, the distribution of actual geomagnetic disturbances does not follow a 
Gaussian normal distribution. In fact, the 99.7 percentile on geomagnetic disturbances 
is generally closer to the 6-sigma value. In order to more accurately predict these 99.7th 
percentile values in this scenario, the residuals were binned to determine the actual 
value of the 99.7 percentile. 
 
The goal of the simulation study was to assess the level by which downhole data would 
be affected by the disturbance field, before and after applying corrections. Specifically, 
we were interested to compare how much of the disturbance field could be reduced 
with the different available mitigation methods. Without applying a disturbance field 
mitigation method, the remaining disturbance is simply the actual disturbance. Thus, 
the same 99.7th percentile value finding method described above was also used on the 
raw, uncorrected disturbance values measured at the observatory representing the drill 
site. 
 
The plots in Figure 4.12 through Figure 4.17 below show the systematic and random 
disturbance field contributions as a function of geomagnetic latitude, all of which have 
been fitted with a smoothed Bezier spline for more clarity. As expected, the uncorrected 
99.7th percentile value (shown in red) is always higher than the IIFR value (shown in 
yellow), which is in turn higher than the disturbance function value (shown in green). 
This confirms that the disturbance function method achieves the most significant 
reduction in the disturbance field, followed by the less-accurate, though relatively 
simple, IIFR method, and that using no disturbance mitigation method at all can lead 
to large uncorrected errors. 
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Figure 4.12: 99.7 % error percentiles for systematic declination disturbance remaining 
after corrections 

 

 

Figure 4.13: 99.7 % error percentiles for random declination disturbance remaining 
without (red) and after corrections 
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Figure 4.14: 99.7% error percentiles for systematic dip disturbance remaining after 
corrections 

 

 

Figure 4.15: 99.7% error percentiles for random dip disturbance remaining after 
corrections 
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Figure 4.16: 99.7% error percentiles for systematic Btotal disturbance remaining after 
corrections 

 

 

Figure 4.17: 99.7% error percentiles for random Btotal disturbance remaining after 
corrections 
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It is of note that there are auroral electrojet effects visible in the above plots. As the 
electrojet current traverses east-west, it has different effects on the declination, dip, 
and total field. Declination disturbance is mostly caused by other effects, thus the bump 
visible in the uncorrected plot (red) at 65° in Figure 4.13 is fairly small. The largest 
effect on dip is at the crest of the current, with smaller effects to each side, thus the 
uncorrected disturbances are quite large around 65 ° in Figure 4.15. For total field, the 
largest effect is north of the current’s crest, with medium effect south and small effect 
at the crest. This is illustrated in Figure 4.17 by the larger bumps to either side of the 
crest. 
 

4.3.7 General Findings 

To arrive at representative mean values to be used in specific error models 
representative for the situation in the Barents Sea, each 99.7th percentile after 
correction was divided by the corresponding uncorrected 99.7th percentile value and 
averaged across all triplets involved in the study. Table 4.9 shows the results, along 
with average RMS values for each metric, which are representative of typical actual 
measured disturbances. It then multiplies these together to show the worst-case actual 
disturbance. 
 
 
 

Table 4.9: 99.7th percentile error remaining after corrections 

 Uncorrected Nearest 
Observatory 

IIFR DF 

Error type Element 99.7p % 99.7p % 99.7p % 99.7p % 

Systematic Declination 0.166 100 0.126 75.9% 0.112 67.5% 0.071 42.8% 

 Dip 0.090 100 0.042 46.7% 0.039 43.3% 0.031 34.4% 

 Total Field 38.36 100 26.47 69.0% 22.17 57.8% 17.16 44.7% 

Random Declination 1.042 100 0.463 44.4% 0.364 34.9% 0.221 21.2% 

 Dip 0.479 100 0.158 33.0% 0.115 24.0% 0.053 11.1% 

 Total Field 284.0 100 172.65 60.8% 130.89 46.1% 54.80 19.3% 

 
This means, for example, that the 99.7th percentile systematic error for declination 
disturbances after correcting by IIFR is 67.5 % of the corresponding uncorrected error. 
In other words, compared to no correction, IIFR on average delivers 32.5 % reduction 
in systematic declination disturbance at the 99.7th percentile.  
 
Because the study was limited to triplets above 50 ° geomagnetic latitude, and due to 
the density of observatories in Canada, Alaska, and Scandinavia, most 
station/variometer triplets close enough to be used in this study fall in the same latitude 
ranges as the Barents Sea, so these averages can be readily applied to the Barents 
Sea as a whole. 
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As the results of this study will ultimately be used to make determinations on which 
disturbance mitigation method to use in particular situations within the Barents Sea, 
plots are provided illustrating the diminishing effects of each method with distance from 
the observatories used. Figure 4.18, Figure 4.19, and Figure 4.20 (as in Figure 4.8 at 
the beginning of this section illustrating the effectiveness of the un-interpolated method 
on observatory pairs worldwide), represent the percentage of error remaining after 
application of disturbance function mitigation method. 
 

𝑒𝑟 =
𝑑𝑢

𝑑𝑟
∗ 100% 

 
The percentage of error remaining after correction is 𝑒𝑟, 𝑑𝑢 is the uncorrected 

disturbance at the 99.7 percentile, and 𝑑𝑟 is the disturbance remaining after correction, 
again at the 99.7 percentile. Linear fits are also provided, so that these charts may be 
used for quick reference for specific locations in the Barents Sea 
 
 

 

Figure 4.18: Percentage of declination error remaining after correction by both DF and 
IIFR for varying distances to nearest observatory 
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Figure 4.19: Percentage of dip error remaining after correction by both DF and IIFR for 
varying distances to nearest observatory 

 

 

Figure 4.20: Percentage of Btotal error remaining after correction by both DF and IIFR 
for varying distances to nearest observatory 
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A heat map of distances to the nearest observatory is provided below in Figure 4.21. 
For a given drill site location, one can quickly determine the rough distance to the 
nearest available observatory, and referencing the above plots can give a good idea 
of the error reduction in each metric for each method at that location. 
 

 

Figure 4.21: Distances to the nearest currently active observatory for locations in the 
Barents Sea 
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5. Results and Discussion 

5.1 Wellbore Uncertainty in the Barents Sea 

Applying the results of the mitigation studies to Barents Sea drilling, wells similar to 
those typically found in the region are studied. Well position uncertainties, both in the 
vertical and horizontal directions, calculated based on the results of the studies are 
shown for such wells with varying levels of surveying performed. 
 

5.1.1 Prototype Well 

The amount of uncertainty present in a bottom hole location will depend on both the 
well profile and the method of surveying used to determine the position. For this study, 
a set of prototype wells were used matching the profile outlined as ISCWSA NO. 1 in 
Williamson 2000. The well profile consists of a build to 60 degrees, holding a tangent 
section for 3000 m, a build to horizontal, then an extended reach lateral. This profile is 
advantageous for this type of study because:  
 

• It is a representative prototype for wells that have been drilled offshore in 
Norway 

• It has been well studied in the context of positional uncertainty evaluation 

• It demonstrates a full range of reasonable inclinations for quality control 
purposes 

• It is easily broken into segments if wells of other types want to be studied (e.g. 
low angle build and hold, or build to horizontal directly from vertical). 

 

 

Figure 5.1:  Profile of the test wells used in the study 
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Two alterations were made to the well proposed in Williamson to reflect the purposes 
of this study. These changes were:  
 

• Changing the magnetic reference values used to correspond with those 
expected in the Barents Sea. This is so that positional uncertainty calculations 
will reflect the higher magnetic latitude of the proposed Barents Sea drilling. The 
magnetic reference values used for uncertainty modelling were 55,000 nT Total 
Magnetic Field Strength, 80 ⁰ Magnetic Dip Angle, and 15 ⁰ Magnetic 
Declination.   

• Plotting several wells over a range of azimuths rather than a single well at a 
single azimuth. This enables the azimuthal dependence of positional uncertainty 
to be readily illustrated. For this study, well azimuths ranging in equal intervals 
from 15 to 135 true azimuth were used for analysis. It should be noted that the 
azimuth dependency of positional uncertainty will mirror about magnetic 
East/West, that is a well drilled at 135 ° true azimuth (30 ° south of magnetic 
east) will have the same lateral uncertainty as a well drilled at 75⁰ true azimuth 
(30˚ north of magnetic east). The well at 135 ° true azimuth was included in the 
study so that this point could be illustrated, and wells with a more southerly 
trajectory were omitted to avoid redundancy. 

 

5.1.2 Vertical Uncertainty 

The calculated true vertical depth of a well is strictly a function of the measured survey 
depth (length of pipe downhole) and the measured inclinations. A minimum curvature 
calculation is performed between each pair of surveys. For two given inclinations with 
a known curve length between them, a constant-radius curve can be fit, and the change 
in vertical depth can be found. Because measured depth does not have error 
associated (an operator knows exactly how much pipe has been fed downhole), the 
only way vertical uncertainty may arise is through inaccurate inclination. The inclination 
measurement coming solely from the accelerometers in the MWD sensor has far fewer 
potential sources of error than the azimuth measurement, which employs both the 
accelerometers and magnetometers.  
 
Assuming proper procedure is followed and a well-calibrated instrument is used, the 
measurement of tool deflection from vertical should be robust and accurate. The 
dominant errors when determining inclination come from the physical misalignment of 
the surveying instrument with the borehole. Sagging of the bottom hole assembly due 
to gravity can cause large systematic misalignments between the MWD sensor and 
the well path, as shown above in Figure 2.2. These misalignments are expected to 
grow as more inclination is built in the hole. 
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Table 5.1: Vertical uncertainty with and without sag correction (calculated at 3-
sigma) 

Well Section 
Measured Depth 

 
Standard 

Vertical Uncertainty 
Sag Corrected 

Vertical Uncertainty 

First Kick Off Point 1200 m ± 2.4m ± 2.4m 

End of Build (60⁰ inc) 2100 m ± 5.6m ± 4.8m 

End of Tangent 5100 m ± 32.4m ± 21.6m 

Landing Point  5400 m ± 35.6m ± 23.4m 

Well TD 8000 m ± 64.9m ± 39.2m 

 
For an extended reach lateral well, sag is the single largest source of vertical 
uncertainty. This is true of wells surveyed with MWD regardless of geographic location 
and is not a problem unique to the Barents Sea. This error can be significantly reduced 
by performing analysis on the bottom hole assembly and compensating for expected 
misalignments between the sensor package and the borehole. The difference between 
the expected uncertainties before and after compensating for sag can be found in 
Table 5.1. The vertical uncertainties described in Table 5.1 are independent of azimuth 
and will be the same for all test wells in this study. Given that the analysis required for 
sag compensation does not require any special equipment or additional drilling time, 
there is virtually no downside to including sag corrections in the wellbore positioning 
process. 
 

5.1.3 Lateral Uncertainty 

In general, deviated wellbores surveyed with magnetic MWD survey sensors will have 
a larger uncertainty in the lateral direction than the vertical direction. This is because 
there are multiple large errors that can affect a magnetic survey that exist outside of 
the surveying sensor itself. Error in the magnetic reference and axial magnetic 
interference from the drillstring are the two largest contributors of lateral uncertainty 
and given that they are not sensor-related, they cannot be removed through sensor 
calibration or by replacing the MWD with more accurate instrument.   
 
Declination is a value that is added to the magnetic reading to correct the azimuth from 
a magnetic north direction to a true north direction. There is no way to internally 
measure this value downhole with an MWD instrument, instead it must be calculated 
from a reference model. Any error in that reference model will therefore contribute 
directly to azimuth error in a 1-to-1 fashion. To reduce the uncertainty from magnetic 
declination error, a more accurate model must be used for calculating the reference 
values. There are a range of considerations that must be accounted for when choosing 
a magnetic model. Some models of the global main are freely available and updated 
every 5 years (IGRF and WMM), however it should be noted that these models are not 
designed with directional drilling and wellbore positioning in mind.  
 
Annually updated models of the main field (Standard Definition Models) and long 
wavelength crustal field (High Resolution Models) are available for use with directional 
drilling and reduce both the errors due to both secular variation and crustal fields. Much 
like sag corrections, applying these higher accuracy models requires no additional 
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equipment or rig time which has led to their wide adoption across the industry. Hence, 
for the base case in this study wells are modelled using the MWD+HRGM+SAG tool 
code, representative of a well drilled using an MWD sensor and an annually updated 
global high-resolution geomagnetic model. Lateral Uncertainties for the test trajectories 
using the high-resolution geomagnetic reference model can be found in Table 5.2. 
 
Further reduction of the error in declination can be achieved by taking local magnetic 
measurements and building a high-accuracy model of the crustal field in the area 
drilling will take place. This process known as In-Field Referencing type 1 (IFR1) can 
greatly reduce the lateral uncertainty in the wellbore, particularly in the North/South 
direction. The improvements from IFR1 are less apparent when drilling East/West, not 
because the corrections are less valid, but instead because axial interference 
contributes a greater portion of the overall error. Table 5.3 shows the lateral 
uncertainties for the test well trajectories if a crustal field model meeting industry 
standard accuracy levels is used to compute the reference declination. A spider plot 
showing the top-down view of both sets of trajectories is shown in Figure 5.2. 
 

Table 5.2: Lateral uncertainty with MWD+HRGM+SAG (calculated at 3-sigma) 

Well 
Section 

Measured 
Depth 

 

Lateral Uncertainty for each well direction 

15⁰ azi 45⁰ azi 75⁰ azi 105⁰ azi 135⁰ azi 

Kick Off 
Point 

1200 m ± 6.4m ± 6.4m ± 6.4m ± 6.4m ± 6.4m 

End of 
Build  

2100 m ± 18.6m ± 21.1m ± 24.9m ±27.1m ± 24.9m 

End of 
Tangent 

5100 m ± 115.13m ± 151.9m ± 190.2m ± 212.1m ± 190.2m 

Landing 
Point  

5400 m ± 126.1m ± 160.8m ± 209.3m ± 233.5m ± 209.3m 

Well TD 
 

8000 m ± 226.6m ± 293.0m ± 385.4m ± 431.5m ± 385.4m 

 
 

Table 5.3: Lateral uncertainty with MWD+IFR1+SAG (calculated at 3-sigma) 

Well 
Section 

Measured 
Depth 

 

Lateral Uncertainty for each well direction 

15⁰ azi 45⁰ azi 75⁰ azi 105⁰ azi 135⁰ azi 

Kick Off 
Point 

1200 m ± 6.4m ± 6.4m ± 6.4m ± 6.4m ± 6.4m 

End of 
Build  

2100 m ± 15.2m ± 18.2m ± 22.9m ± 24.9m ± 22.9m 

End of 
Tangent 

5100 m ± 86.6m ± 125.3m ± 178.1m ± 198.1m ± 178.1m 

Landing 
Point  

5400 m ± 94.9m ± 137.8m ± 196.4m ± 218.2m ± 196.4m 

Well TD 
 

8000 m ± 171.5m ± 252.8m ± 362.9m ± 405.2m ± 362.9m 
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Figure 5.2: Plan view depiction of test wells with uncertainties from a High-resolution 
geomagnetic model and type 1 In-field referencing (calculated at 3-sigma) 

 
The presence of magnetic components in the bottom hole assembly will create an 
effective bias on the axial magnetometer in the MWD sensor. The amount of azimuth 
error this causes is directly related to the inclination and azimuth of the wellbore. In 
particular, the closer to horizontal East/West a well is being drilled, the greater the 
impact of the axial bias on the azimuth.   
 
If there is sufficient change in the wellbore orientation, there are methods to estimate 
this axial bias and correct for it while the well is being drilled. This process, known as 
multi-station analysis, can yield a significant reduction in wellbore uncertainty if 
properly applied. A prerequisite for applying a multi-station solution is having an 
accurate magnetic reference for the total magnetic field strength and the magnetic dip 
angle. For drilling operations at low latitudes, it is typically sufficient to have a crustal 
field model (IFR1) to use multi-station analysis techniques. At the high latitudes like 
those proposed in the Barents Sea, the magnetic disturbance field is a confounding 
factor when attempting to apply multi-station analysis. The details of why this is so are 
presented in greater detail in the next section.  
 
For the purposes of analyzing possible uncertainty reductions, the multi-station 
analysis solution was modelled only if a real-time disturbance field correction was also 
being performed (In-Field Referencing type 2, or IFR2). Table 5.4 outlines the 
uncertainty reductions that can be achieved given that both IFR2 and multi-station 
analysis are performed on the dataset. Figure 5.3 shows a graphical comparison of 
these uncertainties relative to those provided by only an IFR1 correction.  As would be 
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expected from how axial bias impacts surveys, the greatest benefit from multi-station 
analysis comes when drilling closer to magnetic East/West.    
 
 

Table 5.4: Lateral uncertainty with MWD+IFR2+MS+SAG (calculated at 3-sigma) 

Well 
Section 

Measured 
Depth 

Lateral Uncertainty for each well direction 

15⁰ azi 45⁰ azi 75⁰ azi 105⁰ azi 135⁰ azi 

Kick Off 
Point 

1200 m ± 6.4m ± 6.4m ± 6.4m ± 6.4m ± 6.4m 

End of 
Build  

2100 m ± 12.4m ± 13.3m ± 14.9m ± 15.8m ± 14.9m 

End of 
Tangent 

5100 m ± 57.3m ± 71.1m ± 90.7m ± 100.7m ± 90.7m 

Landing 
Point  

5400 m ± 62.5m ± 77.8m ± 99.4m ± 110.5m ± 99.4m 

Well TD 8000 m ± 111.1m ± 139.5m ± 179.6m ± 200.1m ± 179.6m 

 
 
 

 
 

Figure 5.3: Plan view depiction of test wells with uncertainties from a type 1 In-field 
referencing and type 2 In-field referencing with multi-station analysis 
(calculated at 3-sigma) 

 



Petroleumstilsynet Page: 63 : 103 
Challenges Related to Positional Uncertainty Rev.: 1 
for Measurement While Drilling (MWD) in the Barents Sea Date: Dec 2017 

 

    

5.1.4 Uncertainty Reduction Considerations 

The required level of uncertainty reduction is often driven by many factors. Some of 
these are economically motivated, such as the amount of production that will be lost if 
a geologic target is missed, or the ability to accurately drill numerous wells in proximity 
to maximize the amount of hydrocarbon that can be produced from an asset. These 
decisions are subject to any number of business considerations that will be operator 
specific and will not be touched upon further in this document. Other uncertainty 
reduction considerations are safety related, in particular the ability to successfully drill 
a relief well in the event there is a loss of well control. This worst case scenario has 
several aspects that must be considered regardless of the other reasons one may want 
to improve the accuracy of the well position. 
 
When drilling a relief well, a new hole is spudded in a safe distance away from the 
original surface location which is then directed toward the original well path. Once the 
relief well is close enough to the original hole, well-to-well ranging technologies are 
used to precisely determine their positions relative to each other. By directing the new 
well into the old well path, communication of drilling fluids can be established, and a 
high-density mud can be pumped into the old hole regaining control of the well. The 
success of this operation depends on several key factors: 
 

• How deep the original hole is cased (to identify via ranging) 

• The accuracy of the original hole position (to drill at with the relief well) 

• The accuracy of the relief well position (to enable accurate steering) 
 
For the purposes of this study, it will be assumed that the relief well is of a similar style 
and trajectory as the original well, and therefore has a similar positional uncertainty 
associated with it. This is a reasonable assumption, as well intercept trajectories strive 
to be near parallel to the original wellbore at the point of interception, thus maximizing 
the length across which the intercept may occur.  Given that the interception must occur 
above the most recent casing point, it is assumed that this would take place 
somewhere along the tangent section (2100-5100m) in the test trajectories. Finally, 
when dealing with the uncertainty in the relative position of two wells, it is necessary to 
add their respective uncertainties in quadrature, effectively increasing the uncertainty 
by 40 % over the original amount. Using those assumptions, Table 5.5 shows the 
average combined uncertainties expected along the tangent section of the test 
trajectories for each of the magnetic surveying methods mentioned. 
 

Table 5.5: Estimated average relative uncertainties between a relief well and a 
target well drilled parallel along the tangent (calculated at 3-sigma) 

Survey Type 
Average combined uncertainty along tangent 

15⁰ azi 45⁰ azi 75⁰ azi 105⁰ azi 135⁰ azi 

HRGM ± 94.6m ± 122.3m ± 152.1m ± 169.1m ± 152.1m 

IFR1 ± 72.0m ± 101.5m ± 142.1m ± 157.7m ± 142.1m 

IFR2+MS ± 49.3m ± 59.7m ± 74.7m ± 82.4m ± 74.7m 
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Magnetic ranging methods are divided into two types – active and passive systems.  
Active magnetic systems require pulling the drill string from the hole so that a wireline 
instrument may be lowered into the well and used to detect the offset casing. Passive 
systems use measurements taken from the MWD system to estimate the distance of 
an offset well. The trade-off between the two systems is time vs. capability. Performing 
surveys for a passive ranging run may only require an hour of off-bottom time for a 
drilling operation, while a full active ranging run may require multiple days. The stated 
capabilities of both passive and active ranging will vary depending on conditions and 
provided, but typical detection ranges are on the order of 25 m for passive systems 
and 50 m for active systems.  
 
It should be noted that these ranges are generally lower than the estimated relative 
uncertainties modelled in the ranging scenario above. There are several techniques 
that may be employed to augment the capabilities of the ranging tools in the relief well 
scenario. The first is known as a “fly-by” drilling pass. In this scenario, a relief well is 
initially drilled at a high angle of incidence toward the target well at a point much earlier 
than intended intercept point. The uncertainty of the wells is low enough to establish 
ranging contact and reduce the relative uncertainty in the wells to a manageable level. 
After establishing ranging contact, the original well is then sidetracked so that the 
interception operations can continue. This technique is time-consuming, however may 
be necessary in cases where the relative uncertainty at the intercept location is 
significantly greater than the ranging distance. In these cases, such as the 
uncertainties modelled for the HRGM method and for the IFR1 scenarios near 
magnetic East/West, there is a high probability that a direct intercept will not succeed. 
 
A second method known as “sweeping” involves drilling the relief well at a slightly 
higher angle of incidence to the target until ranging contact is made. This technique 
takes advantage of the fact that uncertainty is concentrated primarily along one axis, 
so a side-to-side “sweep” of that axis increases the probability that ranging contact is 
made at some point in the operation, rather than at a single specific point. This 
technique is inherently limited by the ability to steer the relief well relative to the target 
across the intercept window while maintaining a trajectory that can still successfully 
intercept the target well. As a result, it is generally only used once the relative 
uncertainty between the two wellbores is already at an acceptably low level. In practice, 
a combination of both techniques may be used on a relief well intercept operation. 
 

5.2 Effects of Inaccurate Geomagnetic Referencing 

Real-time quality control of MWD surveys is an important step in ensuring that pre-job 
risk assumptions related to wellbore positioning are met. This is crucial for maximizing 
the potential for economic viability (hitting the geological target), minimizing the 
possibility of wellbore collision, and deployment of mitigating actions (drilling a relief 
well) in the event of a loss of well control.  The orientation measurements (inclination 
and azimuth) from any surveying instrument can only be verified directly by running an 
additional surveying instrument and comparing the results.  
 
In most drilling applications, this type of verification is unnecessarily burdensome and 
may expose the operation to additional risk (rigging up a wireline, limiting the rig’s ability 
to circulate or rotate the drillstring, etc.). Instead, for magnetic measurement while 
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drilling tools, it is possible to perform an interval validation of the instrument by 
analyzing a secondary set of orientation-independent measurements. This typically 
involves a direct measurement of the local magnetic field strength, the local 
gravitational acceleration, and the magnetic field dip angle. These readings can be 
produced at every survey station along with an inclination and azimuth and as long as 
these readings match the theoretical expectations to within a tolerance, there is no 
reason to believe that the surveying instrument is operating outside of the expectations 
made prior to commencing drilling.  The quality of this verification process will 
correspond directly to the extent with which the reference field values are known, and 
the extent to which the dominant error sources on inclination and azimuth are 
observable in the survey data. Survey Quality Tolerances can be calculated based on 
the assumptions made in the error model chosen prior to beginning drilling. 
 

5.2.1 Dominant Errors and Directional Dependence in MWD Surveying 

Industry standard instrument performance models for MWD surveying tools list more 
than twenty different error sources that are expected to impact a survey even assuming 
all standard practices are correctly applied.  Despite the large number of potential error 
sources, for a particular survey set the majority of the survey error (both in terms of 
positional uncertainty and with respect to survey quality control) will come from only a 
handful of the error terms. The most common large survey errors are:  
 

• Error in the geomagnetic reference model 

• Axial magnetometer bias from drillstring interference 

• Alignment error between the bottom hole assembly and the wellbore (sag)  
   
Of these three error sources, only the first two can be detected through internal quality 
control measures.  Geomagnetic reference error is caused by source external to the 
surveying assembly, and therefore has no directional dependence in how it impacts 
either survey azimuth or survey quality control. On the other hand, drillstring 
interference is aligned with the bottom hole assembly and will exhibit a strong 
directional dependency both in how it manifests in survey acceptance criteria and in 
how it will corrupt the measured azimuth. Due to this, proper quality control of an MWD 
survey must consider the wellbore orientation, and the expected effects of drillstring 
interference to assure that the assumptions made in the positional uncertainty model 
have been met (Ekseth et al., 2006a, 2006b).      
 
Drillstring interference behaves in a fashion identical to a sensor bias in the axial MWD 
magnetometer. When evaluating how an MWD survey deviates from the reference 
magnetic model, this means that magnetic field errors are expected to be larger in the 
direction being drilled. This directional dependency creates a covariance between 
acceptable level of errors in total magnetic field and dip. For example, when drilling 
vertically, drillstring interference will create a positive correlation between field strength 
and dip, because any vertical addition to the field magnitude would also deflect the field 
vector downward, increasing the dip angle. A survey exhibiting a higher than reference 
field strength coupled with a higher than reference dip is more likely to be an acceptable 
survey than one that shows an inverse relationship, because vertical interference 
(aligned with the drilling direction) is expected to be stronger than horizontal 
interference (perpendicular to the drillstring). Similar relationships for other error 
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sources can be derived, but in practice the impact of drillstring interference creates the 
largest directional dependence. The charts in Figure 5.4 show a model of how drillstring 
interference at the 1-sigma level for the MWD standard error model (220 nT) is 
expected to impact the total magnetic field and dip measurements for each of the 
example wells. 
 

 

Figure 5.4: Errors in measured magnetic field strength and dip angle caused by 
220 nT of axial magnetic interference 
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From a practical perspective this creates three "zones" of survey quality depending on 
how well the survey values correspond to the reference:  "green" surveys are of such 
high quality that there is no need to assess the covariance between quality parameters 
to validate the positional uncertainty model; "red" surveys have one or more 
parameters that are so far removed from reference that they will not meet model 
assumptions;  in between those are "orange" surveys, where it is necessary to look at 
the correlations between errors to determine whether or not a survey is meeting 
expectations. Quality control plots are shown below demonstrating these various zones 
at a 3-sigma level of total field strength and dip for two of the example wells, one at a 
15 ° azimuth and one at a 75 ° azimuth.    
  
The trends in these field acceptance criteria closely follow those of the modelled 
drillstring interference from Figure 5.5. In the case of the 15 ° azimuth well, a large shift 
in dip may be observed as the drillstring orientation changed from being aligned with 
the vertical magnetic field to being in line with the horizontal magnetic field. For the 
75 ° azimuth well this effect is much smaller because the interference will not be 
aligned with the magnetic field. When drilling closer to magnetic East/West the error 
from drillstring interference contributes to azimuth rather than magnetic dip angle. 
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Figure 5.5: Field acceptance criteria for total magnetic field and dip angle on two 
example wells 

 
A public web API (http://fac-api.magvar.com) and calculator (http://fac.magvar.com) 
are being provided by MagVAR, which implements dynamic quality control for the 
ISCWSA OWSG Rev-2 error model tool codes. Users can upload MWD surveys and 
receive the relevant QC information for the selected tool code. Apart from the sigma-
distance indicating pass or failure of the survey, the API also returns the random and 
systematic uncertainties in the measured inclination and azimuth taking the location 
and wellbore orientation into account. The API enables single queries via a web 
interface, as well as programmatic access by user software. This API and calculator 
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was presented at the 46th General Meeting of the ISCWSA in San Antonio (Maus et 
al., 2017). 
 
The use of 3 "zones" in qualifying an MWD survey leads to potential ambiguities that 
are generally considered undesirable. Instead a mathematical transform can be 
performed that directly incorporates the covariances of the quality control parameters 
and assigns each survey a relative error (known as the Mahalanobis distance) from 
the expected reference.  
 
The Mahalanobis distance can be thought of similar to the sigma level used in pre-drill 
planning operations, and as such is often referred to as a "sigma" qualifier for a given 
survey. Computing a sigma for each survey removes the ambiguous area where it is 
unclear if a certain quality control parameter is inside or outside of specification. 
Additionally, the pass/fail criterion for sigma is completely independent of wellbore 
orientation, positional uncertainty model, and geographic location. The downside of 
using a sigma distance is that the mathematical process for reproducing it by hand is 
arduous, but in the modern age of ubiquitous microprocessors this is rarely an issue. 
An example of a sigma quality control plot is shown in Figure 5.6, and would be 
identical for all of the test wells used in this study.   
 

 

Figure 5.6: Field acceptance criteria for total magnetic field and dip angle on two 
example wells 

 
Using the single sigma criterion for qualifying a survey allows for the statistical 
qualification of any survey set using an identical metric that can be computed using a 
standard chi-squared table. For the case of evaluating whether a survey fails the 
assumptions of an error model, a probability can be derived using 3 degrees of freedom 
(Total Gravity, Total Magnetic Field, and Dip Angle) a 3-sigma confidence level (critical 
value of 32 = 9). Solving for this gives a cumulative chi-squared probability of 0.97, 
meaning that a survey set should be rejected if more than 3 % of the surveys fall 
outside of a sigma distance 3 from reference. This type of survey qualification removes 
any ambiguity that may arise from orientation change, reference model quality, or 
survey corrections that have been applied.  
 

5.2.2 Drillstring Interference Observability and Survey Corrections 

As drillstring interference is one of the largest contributors toward positional uncertainty 
for wellbores surveys with MWD instruments, the ability to observe its magnitude is 
vital toward proper quality control of the bottom hole position. Once the level of 
drillstring interference has been estimated, it is only natural to attempt to correct the 
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survey by removing that effect. This process forms the basis for both single station and 
multi-station survey corrections.  
 
Drillstring interference can be identified through several means. The first, and simplest, 
method involves estimating the interference by looking at the error of a survey station 
from the reference values. This has appeal because it can be done on a dataset as 
small as one point, and this forms the basis of single-station axial magnetic interference 
corrections (also known as short-collar corrections). The quality of this estimation, and 
in turn the correction, will be heavily dependent on wellbore orientation.  As shown in 
Figure 5.4 for some wellbore orientations, there are certain combinations of inclination 
and azimuth where this is only a minimum level of error in both total magnetic field and 
dip angle.  
 
In particular, when drilling in the horizontal East/West direction, where azimuth error 
from drillstring interference is the most, this method may over- or under-estimate the 
amount of error present in a survey. The presence of any errors not aligned with the 
borehole axis (such as cross-axis sensor biases or geomagnetic reference field errors) 
will violate the assumptions of the corrections and add errors to the survey azimuth. As 
a result, this single-point method is not recommended in cases where more 
sophisticated techniques can be readily applied.  
 
The most powerful method of identifying drillstring interference from downhole survey 
data comes from analyzing a set of data for both deviation from reference values and 
also change in reference values with respect to changing instrument orientation. This 
technique, known as multi-station analysis, is capable of identifying a wide range of 
sensor errors including drillstring interference. Referring back to Figure 5.4, there are 
distinct transitions in measurement error level across each of the build sections in each 
test wellbore. When analyzing a survey set, these transition intervals are especially 
useful for estimating survey errors due to drillstring interference. Achieving a stable 
multi-station solution may require upwards of 10 to 20 surveys to be taken at a range 
of orientations. For magnetic surveying applications where accuracy is of high-
importance, multi-station analysis has become a de facto standard when processing 
downhole data. 
 

5.2.3 Ensuring the Quality of Multi-Station Analysis 

Multi-station analysis can be a powerful tool for ensuring MWD survey quality, however 
achieving a high-accuracy correction requires certain fundamental criteria be met: 
 

• Errors in the MWD sensors must be constant or near constant throughout the 
run 

• Orientation change in the survey set should be maximized to the greatest extent 
practicable  

• Error in the geomagnetic reference should be minimized to the greatest extent 
practicable 

 
 
The first criterion can be met by choosing a survey provider with appropriate standard 
operating procedures in place to ensure survey quality. These procedures should cover 
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tool calibration requirements, pre- and post-job instrument verification, and proper 
monitoring of shock and vibration during the drilling process.  Real-time monitoring of 
shock and vibration, along with rigorous calibration and tool qualification procedures 
are practices that have been widely adopted by virtually all major MWD surveying 
providers. 
 
One of the biggest potential limitations for multi-station analysis is that its solutions may 
be limited by a lack of orientation change in a wellbore. For the extreme case of drilling 
a straight section, the drillstring interference estimate may not be much better than that 
of a single station correction. This limitation can be mitigated with proper planning and 
the addition of checkshot surveys. Checkshot surveys are additional measurements 
taken higher in the wellbore than the current drilling section, ideally at a known 
inclination and azimuth.   
 
In the case of the example trajectories used in this study, surveys from the vertical and 
initial build section could be used to improve the quality of the corrections in the tangent 
interval and surveys from the tangent and second build should be used to augment the 
correction for the extended reach lateral. Checkshots must be taken in a portion of the 
wellbore that is free from external magnetic interference, so the presence of a casing 
shoe will limit the possible locations for checkshots. If possible, consideration should 
be giving to casing points and build sections so that there is a significant variation in 
the open hole that is available for taking checkshots prior to drilling straight sections.  
This is of particular importance in East/West laterals where there is little to no magnetic 
observability of drillstring interference.  
 
Geomagnetic reference error primarily comes from two different sources: crustal 
anomalies in the local geology where drilling is taking place, and solar disturbances 
that occur during the drilling process. How each of these errors impacts the survey 
qualification and correction process is different, but both can have significant impacts 
if not accounted for.  Crustal anomalies will cause systematic offsets in the magnetic 
measurements relative to the modelled reference values, not unlike the effect of 
drillstring interference when drilling a straight section of the wellbore. This can lead to 
the improper estimation of drillstring interference when using either single or multi-
station analysis techniques. These errors in drillstring interference estimation may in 
turn cause correction-induced systematic azimuth error in the survey set.  
 
The solar disturbance field is unpredictable over the long term and has the overall effect 
of adding systematic and random noise to the survey measurements. Any disturbance 
field features that persist over several days, such as those due to the magnetospheric 
ring current, will create systematic errors in uncorrected survey data. Here we 
considered periods of 3 days and longer as systematic and all shorter period 
disturbances as random errors. The systematic solar disturbances cause wellbore 
positioning errors which do not average out to zero over the period of drilling. The 
detrimental effect of such systematic errors was already mentioned in a study of 
Edvardson, 2013.  
 
In addition, the random variation of the magnetic field can have a number of indirect 
effects that complicate standard wellbore surveying workflows. At high magnetic 
latitudes, the random fluctuations in total magnetic field strength and magnetic dip 
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angle can be as large or larger as the deviations induced by other surveying error 
sources such as drillstring interference.  The presence of this external noise can lead 
to the statistical rejection of a survey set that otherwise should have passed. 

5.2.4 Reference Error Simulations 

To demonstrate the impact of reference errors, a set of 5 example wells were modelled 
with 250 nT of drillstring interference applied to the 45 ° azimuth test trajectory. To 
provide the greatest amount of orientation change possible these trajectories were 
treated as though they had been drilling in a single run, even though in practice this 
would not be the case. These simulated wells had offsets and noise added to them 
corresponding to the expected distributions for the crustal anomalies and solar 
disturbance expected in the Barents Sea, as derived from observatory magnetic 
measurements in the prior section.  
 
The resulting survey sets were then corrected using multi-station analysis, then had 
both the raw and corrected surveys evaluated against the sigma criterion to see 
whether they would statistically be accepted or rejected. An example of the raw survey 
quality control measurements along with the post-correction quality control is shown in 
Figure 5.7 and Figure 5.8. Recall that the rejection criteria of at the 3-sigma level is 
3 % of surveys. Using that metric only one of the raw survey sets and one of the 
corrected survey sets would have been accepted as valid, even though these surveys 
were internally largely free of errors (the drillstring interference is near the 1-sigma 
level).  
 
Even more concerning, the validity of the modelled survey sets bears little correlation 
with the true accuracy of the bottom hole position. Each of the raw surveys would have 
been equally accurate, having been corrupted with the same amount of drillstring 
interference.   The accuracy of the corrected surveys is directly related to the quality of 
the drillstring interference estimation. In this case, the least accurate drillstring 
interference estimation turned out to be the only survey that would not have been 
rejected by statistical test established earlier.  In this case the error induced by the 
inaccuracy of standard referencing is capable of completely overwhelming the validity 
of typical survey corrections.  
 

Table 5.6:  Modelled Quality Control of Wells with Standard Referencing 

 
 

 

Well 
Percentage of 
Raw Surveys 

Failing 3-Sigma 

Percentage of 
Corrected 

Surveys Failing 
3-Sigma 

Estimated 
Drillstring 

Interference (nT) 

Error in 
Drillstring 

Estimate (%) 

Well 1 9.0 6.3 229 8.4 

Well 2  39.5 2.2 458 83.2 

Well 3 14.2 12.7 208 16.8 

Well 4 19.4 11.9 245 2.0 

Well 5 2.6 4.9 162 35.2 
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Figure 5.7: Well #3 simulated quality control values for drilling at a 45 degree 
azimuth with standard referencing 
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Figure 5.8: Well #3 simulated quality control values after multi-station analysis 

 

5.3 Discussion 

For the purposes of modelling the positional uncertainty of wellbores in the Barents 
Sea, a set of test trajectories were constructed mapping the extreme end of what an 
extended reach lateral may entail at a range of drilling azimuths. The positional 
uncertainties were modelled using industry accepted error models from the Operator’s 
Wellbore Survey Group Standard Sets. These models included correcting for crustal 
anomalies (In Field Referencing Type 1, or IFR1), correcting for magnetic disturbances 
(In Field Referencing Type 2, or IFR2), and correcting for axial magnetic bias (MSA).  
 
For all wells modelled there was at least some combination of standard corrections 
capable of reducing the uncertainty to a level where a relief well has a strong chance 
of success using conventional ranging operations (25-50 m detection range).  For wells 
that are predominantly north/south, significant uncertainty reduction may be achieved 
using a high-accuracy crustal field model (IFR1). To see the same reductions of 
uncertainty in an east/west well, it is also necessary to use multi-station analysis 
techniques to reduce the uncertainty caused by axial magnetic bias in the drillstring.  
  



Petroleumstilsynet Page: 75 : 103 
Challenges Related to Positional Uncertainty Rev.: 1 
for Measurement While Drilling (MWD) in the Barents Sea Date: Dec 2017 

 

    

The OWSG error models are the product of a group of wellbore positioning subject 
matter experts, have been subject to extensive peer review, and are widely 
implemented in industry standard software. While they are largely derived from 
aggregated data from wells surveys at much more moderate latitudes than the Barents 
Sea, they have the benefit of being performance-based, rather than procedure-based. 
In other words, rather than specifying a process required to use the error model, 
instead there is a specified level of accuracy that an operator may achieve through a 
variety of means. This means that their applicability to the Barents Sea can be 
demonstrated by validating the means of survey corrections, rather than relying on 
assumptions from low-latitude surveying that may not hold true further North. To this 
end both the IFR1 and IFR2 corrections were tested against the performance criteria 
outlined in the published error models.  
 

5.3.1 Crustal Mitigation Results 

For the purposes of crustal corrections through IFR1, two methods were evaluated in 
chapter 4.2.3. These are the flat earth method and the ellipsoidal harmonic method. Of 
these two methods, the ellipsoidal harmonic method was found to be likely to meet the 
requirements of the OWSG MWD+IFR1 error model, so long as aeromagnetic data of 
at most a 4 km line-spacing is available. Data with 1-2 km line spacing is much more 
desirable. A data search was conducted that found aeromagnetic data of this quality 
was present for the western portion of the Barents Sea (west of 32 ⁰E longitude). To 
determine line spacing of data available for a particular sub-region of the Barents Sea, 
one may reference Figure 4.5 and Table 4.2. The present data search found data, but 
not of sufficient quality for an OWSG IFR1 compliant model covering the eastern 
portion of the Barents Sea as well. 
 

5.3.2 Disturbance Mitigation Results 

Three methods of correcting the magnetic disturbance field were explored: correction 
using the nearest magnetic observatory, correction using an interpolated value 
between two observatories, and correction using a disturbance function derived from 
nearby observatory data. Additionally, the concept of installing a local observatory was 
considered. Of these three methods evaluated, the disturbance function method 
achieved the best prediction of the local magnetic values, particularly as the distance 
to the nearest magnetic observatory increases. 
 
The results of chapter 4.2.3 can be used to determine distances at which each method 
meets OWSG IFR2 tool code requirements. Since the error equations for dip and total 
field do not have any latitude-dependence, the OWSG IFR2 requirement for declination 
was considered: 0.279 ° remaining after corrections. Because geomagnetic latitudes 
in the Barents Sea are in the mid to high sixties, 68 ° is chosen as representative.  
 
Referencing Figure 4.13, the 99.7th percentile for uncorrected disturbance expectable 
in the Barents Sea is 1.4 °. Because only 0.279 ° is allowable by the OWSG 
requirement, a mitigation method must be chosen which reduces the remaining error 
to 20 %. Referencing Figure 4.19, the Nearest Observatory and IIFR methods have 
more than 20 % error remaining at all distances. It is of note, however, that the study 
only addressed observatories at a distance of >50 km, so it is likely that either of those 
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methods would be sufficient at <50 km. The DF, on the other hand, reduces error to 
the 20 % threshold out to approximately 250 km. For the purposes of this study, 
installation of a real-time local observatory (ocean-bottom or other) is assumed to 
always meet these requirements. 

5.3.3 MWD Note 

The effect of the crustal and disturbance fields on the ability to quality control MWD 
data was studied. Of primary concern is the impact of the disturbance field on raw 
quality control measurements for MWD data. It was found that errors caused by the 
disturbance field on MWD surveys would likely be of a similar size as those expected 
by other typical MWD errors. As a result, there is a high likelihood that MWD survey 
sets using error-model derived quality acceptance criteria would be rejected as poor 
surveys even if a properly functioning instrument was used to conduct the survey. 
These disturbance field errors, if not corrected for, would also preclude the use of multi-
station analysis to remove the axial magnetic bias from ferromagnetic components in 
the drillstring.  
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6. Recommendations 

6.1 General Recommendations 

Wellbore positioning on drilling projects in the Barents Sea has several unique issues 
that must be mitigated to have a successful drilling operation. That said, this should 
not be taken as license to neglect the due diligence that must be performed for 
standard wellbore positioning challenges that impact all wells. Bottom hole assemblies 
should be analyzed for possible sag errors, and the level of magnetic interference on 
the MWD should be estimated prior to running in hole. Corrections for sag should be 
applied, and sufficient non-magnetic spacing should be used to ensure that excessive 
axial bias will not be present in the MWD surveys. These processes add little to no time 
to the drilling process and failure to perform them will greatly increase the possibility of 
large, unmodeled errors in the ultimate wellbore position.   
  
During the drilling operation, MWD surveys should have Gtotal, Btotal and Dip 
measurements compared against accurate real-time reference values and validated 
using the appropriate field acceptance criteria. These field acceptance criteria should 
be derived from the relevant error model used in the design of the wellbore. More 
stringent error models producing smaller ellipses of uncertainty will require tighter 
acceptance criteria than the standard MWD error model. If the wellbore trajectory 
permits, multi-station analysis should be used to estimate and correct for the observed 
axial and cross-axial biases caused by drillstring and other interference. Instruments 
should have calibrations validated before and after being used to perform surveys to 
ensure no gross errors are present. Again, these errors are not unique to the Barents 
Sea, but their importance in the overall wellbore positioning process should not be 
underestimated. If there is a failure in the standard processes needed to position a 
wellbore, then procedures specific to the Barents Sea will prove fruitless. 
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6.2 Specific Recommendations Resulting from this Study 

Standard uncertainty models published and reviewed by industry subject matter 
experts for In-Field Referencing (IFR) and multi-station analysis (MSA) should provide 
a sufficient framework for accurately locating wells and, if need be, drilling a relief well. 
For these models to be applied, extra actions will be required above and beyond a 
typical drilling operation. Current data availability restricts the geographic area where 
these models can be soundly applied. The use of an IFR error model will require the 
use of aeromagnetic data to generate a local magnetic field model.  This study was 
only able to locate data of sufficient quality for a portion of the Barents Sea.  
 
The extent to which additional correction will be necessary will depend on how deep 
the well is to be drilled, the amount of step out in the well, and the expected drilling 
azimuth for the step out. The greater the extent of horizontal deviation in the wellbore 
and the closer the drilling azimuth is to horizontal East/West, the more likely it will be 
that advanced corrections are required to meet the appropriate levels of positional 
uncertainty.  For wells drilled in a northerly or southerly direction, the application of IFR 
will provide the greatest amount of uncertainty reduction. Wells predominantly in an 
easterly or westerly direction will likely require both IFR and MSA as a minimum 
surveying standard.  
 
The use of MSA in these applications will likely require that additional checkshots be 
taken for some sections of the well to ensure that adequate variation in survey 
orientation is achieved. Application of MSA will necessitate real-time compensation of 
the magnetic disturbance field in order to accurately model survey measurement 
deviation from reference values. The disturbance field error magnitudes observed in 
the Barents Sea can be as large or larger than those produced by MWD surveying 
errors and attempting to perform MSA on data that has not removed these errors may 
result in the application of an erroneous survey correction, potentially adding additional 
uncertainty to the bottom hole location.  These issues may be exacerbated further in 
situations where there is limited orientation change across a drilling run.  
 
There are many publicly available magnetic observatories in the vicinity of the Barents 
Sea, and use of any disturbance mitigation method (Nearest Observatory, IIFR, or DF) 
results in decreased remaining disturbance error. To meet OWSG IFR2 requirements 
as stated above, the Disturbance Function (DF) will need to be applied beyond ~50 km. 
Anything beyond ~250 km from the nearest observatory will require a real-time local 
observatory. There was not sufficient data available to determine the effectiveness of 
disturbance mitigation methods at distances closer than 50 km.  
 
In general, the errors are expected to be lower for all mitigation methods. This implies 
that the DF method will still be suitable, however it is possible that IIFR and nearest 
station methods may also have their errors drop to acceptable levels. For drilling 
activities expected to be within 50 km of a magnetic observatory additional study may 
be required if IIFR or nearest stations are to be used in order to determine if those 
mitigation methods will meet the requirements of the OWSG IFR2 error model.  
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Recommendations are as follows: 
 
1. In the western part of the Barents Sea (West of 32° E longitude), IFR1 can be 

readily implemented with available data to meet the MWD+IFR1 tool code 
requirements. Results for this are in 5.3.1 Crustal Mitigation Results. 

 
2. In the eastern part of the Barents Sea (East of 32° E longitude), higher resolution 

magnetic data (a maximum of 4 km line spacing, ideally 1-2 km) will be required to 
meet MWD+IFR1 requirements. This may already be available for discovery or 
purchase, or a new high-resolution aeromagnetic survey may need to be flown. If a 
new survey is flown, it should be acquired at 1km line spacing. Results in 5.3.1 
Crustal Mitigation Results. 

 
3. Seafloor magnetometers should be employed for any operation where cost is not a 

factor and the utmost accuracy is required. While expensive, they cut the 
disturbance uncertainty to essentially zero. 

 
4. In regions of the Barents Sea within ~50 km of a magnetic observatory (near-shore, 

for example), the Disturbance Function method may be used to meet IFR2 tool 
code requirements. It is possible that either the Nearest Observatory method or 
IIFR may also be able to be used, however if they are to be employed a local study 
should be performed prior to drilling in order to confirm that uncertainties are within 
the IFR2 tool code. Of the latter two methods, IIFR will provide better results, as 
shown in Figure 4.19, Figure 4.20, and Figure 4.21, but is slightly more complicated 
to implement. Results in 5.3.2 Disturbance Mitigation Results.  

 
5. In regions of the Barents Sea between ~50 and ~250 km from the nearest magnetic 

observatory, the Disturbance Function method must be used to meet IFR2 tool code 
requirements. Figure 4.21 provides a heat map of distances to the nearest 
observatory for locations in the Barents Sea. Results in 5.3.2 Disturbance Mitigation 
Results.  

 
6. In remote regions of the Barents Sea beyond ~250km from the nearest magnetic 

observatory, a local magnetometer (seafloor or otherwise) with real-time data link 
must be deployed to meet IFR2 requirements. Results in 5.3.2 Disturbance 
Mitigation Results. 
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latest version of the horizontal wind model. Accounting for the thermospheric corotation lag at 
ionospheric E region altitudes results in significantly better agreement between the model and 
the observations. 

 
Macmillan, S., A. McKay, and S. J. Grindrod. "Confidence limits associated with values of the earth's 
magnetic field used for directional drilling." In SPE/IADC Drilling Conference and Exhibition. Society of 
Petroleum Engineers, 2009. https://www.onepetro.org/conference-paper/SPE-119851-MS 

Abstract: This paper describes updated uncertainties for use with predicted geomagnetic 
parameters within magnetic Measurement-While-Drilling (MWD) survey tool error models. 
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These models are used to define positional error ellipsoids along the wellbore which assist in 
hitting geological targets and missing existing wellbores.The declination, dip angle and total field 
strength of the Earth's magnetic field are used with magnetic survey tools for surveying the 
wellbore. These values are often obtained from mathematical models such as the British 
Geological Survey Global Geomagnetic Model (BGGM). As the Earth's magnetic field is 
continually varying with time the BGGM is updated annually to maintain accuracy. However a 
global predictive model cannot capture all sources of the Earth's magnetic field which results in 
uncertainties of the predicted parameters. The Industry Steering Committee on Wellbore 
Surveying Accuracy (ISCWSA) published a MWD error model in 2000 (Williamson, 2000). The 
geomagnetic field uncertainties that are part of this model were derived from work done by the 
BGS in the early 1990s. Since then more accurate data from magnetic survey satellites have 
been introduced into the BGGM and the uncertainty of the predicted geomagnetic field 
parameters has been reduced.The original approach to deriving the uncertainties involved 
separating the various error sources in the magnetic field and assessing them individually. This 
paper uses a simpler approach where clean orientated magnetic down-hole data are simulated 
using geomagnetic observatory data. Spot absolute measurements of the magnetic field made 
at observatories around the world are adjusted for the crustal magnetic field to make them more 
representative of hydrocarbon geology. The adjusted observatory data are then compared with 
the predicted values from the BGGM to assess the uncertainty. The uncertainties do not fit a 
‘normal' distribution so they are expressed as limits for various confidence levels. They vary with 
time and with location and, in their derivation, do not assume any underlying empirical error 
distribution. Options to further reduce the uncertainties using data from local magnetic surveys 
(In-Field Referencing) and observatories (Interpolation In-Field Referencing) are also 
described.The use of the revised geomagnetic uncertainty values in the MWD error model will 
reduce wellbore position uncertainty to reflect the increased accuracy from recent improvements 
in geomagnetic modelling. 

 
Maus, S. "A corotation electric field model of the Earth derived from Swarm satellite magnetic field 
measurements." Journal of Geophysical Research: Space Physics. 2017. 
http://onlinelibrary.wiley.com/doi/10.1002/2017JA024221/full 

Abstract: Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric 
field, compensated by a secondary electric field of induced electrical charges. For the 
geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global 
corotation electric field inside and outside of the corotation region is provided here, in both 
inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower 
atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. 
Outside of the Earth's core, the induced charge is immediately accessible from the spherical 
harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high 
northern and southern latitudes, negative at midlatitudes, and increases strongly toward the 
Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap 
are caused by the corotation charges located in the ionosphere above and the Earth below. The 
corotation charges also extend outward into the region of closed magnetic field lines, forcing the 
plasmasphere to corotate. However, the nonaxially symmetric contributions of the geomagnetic 
field are found to slow down the corotation of the plasmasphere, particular in the South Atlantic. 
The electric field of the corotation charges also extends outside of the corotating regions, 
contributing radial outward electric fields of about 10 mV/m in the northern and southern polar 
caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a 
net electric charge. 

 
Maus, S., “Managing Main and Crustal Magnetic Fields and New Developments in Global Magnetic 
Modeling.” ISCWSA-40, 2014. http://www.iscwsa.net/download/8e5f8442-b64b-11e6-afa6-
d13244c2a34f/ 

Abstract: not applicable for this slideshow.  
 

Maus, S., “Using Geomagnetic In-Field Referencing and Real-time Survey Management for Improved 
Wellbore Placement Accuracy.” 2017.  

Abstract: not applicable for this slideshow. 
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Maus, S., U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena, V. Childers, F. Dostaler, J. D. 
Fairhead, C. Finn, R. R. B. von Frese, C. Gaina, S. Golynsky, R. Kucks, H. Lühr, P. Milligan, S. Mogren, 
D. Müller, O. Olesen, M. Pilkington, R. Saltus, B. Schreckenberger, E.Thébault, and F. Caratori Tontini, 
EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and 
marine magnetic measurements, Geochem. Geophys. Geosyst., under review, 2015. 
http://www.geomag.org/models/emag2.html 

Abstract: Magnetic anomaly maps provide insight into the subsurface structure and composition 
of the Earth's crust. Anomalies trending parallel to the isochrons (lines of equal age) in the 
oceans reveal the temporal evolution of oceanic crust. Magnetic maps are widely used in the 
geological sciences and in resource exploration. Furthermore, the global magnetic map is useful 
in science education to illustrate various aspects of Earth evolution such as plate tectonics and 
crustal interaction with the deep mantle. Distinct patterns and magnetic signatures can be 
attributed to the formation (seafloor spreading) and destruction (subduction zones) of oceanic 
crust, the formation of continental crust by accretion of various terranes to cratonic areas and 
large scale volcanism (both on continents and oceans). 

 
Maus, S., and J. S. Deverse. "Magnetic Referencing and Real-Time Survey Processing Enables Tighter 
Spacing of Long-Reach Wells." In SPE Liquids-Rich Basins Conference–North America. Society of 
Petroleum Engineers, 2015. https://www.onepetro.org/conference-paper/SPE-175539-MS 

Abstract: Positional uncertainty in wellbores is caused by numerous error sources and 
propagates in magnitude along the measured depth of the wellbore. This can be problematic 
when planning or drilling closely spaced long-reach wells while still satisfying collision avoidance 
policies. The ellipses of uncertainty associated with surveys acquired by standard Measurement 
While Drilling (MWD) tools are often too large to enable adequate separation factors between 
wells. MWD tools are instruments mounted inside the bottom hole assembly (BHA) and use an 
accelerometer and magnetometer sensor package to determine the inclination and magnetic 
azimuth while drilling. The magnetic azimuth is used to calculate a true (geographic) azimuth by 
adding the declination angle from a geomagnetic reference model. The largest sources of error 
in standard MWD survey are inaccuracies in the global geomagnetic reference model and 
magnetic interference from the BHA. These error sources can be reduced significantly by using 
a local geomagnetic In-Field Referencing (IFR) model and by subsequently applying multi-
station analysis (MSA) corrections to the raw survey measurements. 

 
Maus S., and J.S. DeVerse. “Simulation of Recovery of Losses Due to Positional Errors in Wellbore 
Placement,” URTeC : 2458814, Unconventional Resources Technology Conference in San Antonio, 
Texas, USA, 1-3 August, 2016. 

http://library.seg.org/doi/abs/10.15530/urtec-2016-2458814  
Abstract: In unconventional resources, horizontal wells are drilled in parallel at a spacing 
distance designed to maximize drainage of the reservoir. Lateral well spacing should be such 
that the drainage radiuses meet, but do not overlap. If drainage envelopes do not meet, then oil 
and gas are left stranded in the reservoir. However, due to the limited accuracy of downhole 
surveying methods, positional errors in wellbore placement often lead to deviations by hundreds 
of feet from the optimal wellbore position. The purpose of this study is to quantify the impact of 
such wellbore placement errors on reservoir recovery for different surveying methods.A 
recovery simulator web application was developed to approximate the effect of wellbore 
positional error on reservoir drainage. The application requires input parameters to define the 
drilling scenario being evaluated. These include lateral wellbore length, lateral well spacing and 
recovery percentage as a function of the drainage radius. A user selects surveying methods to 
be compared in the simulation. Using the latest error models of the Industry Steering Committee 
on Wellbore Survey Accuracy (ISCWSA), the application simulates a large number of wellbores 
drilled with random errors corresponding to the selected surveying methods. The simulation 
assesses the expected amount of oil or gas left in the field due to inaccurate wellbore placement. 
It also provides statistics on the likelihood of wellbore cross-overs and lease line 
infractions.Initial results indicate that random errors in wellbore placement lead to hundreds of 
thousands of dollars in unclaimed hydrocarbons for a typical multi-well pad when using standard 
Measurement While Drilling (MWD). However, this loss is reduced significantly when applying 
advanced surveying methods with higher accuracy, such as In-Field Referencing (IFR) and 
Multi-Station Analysis (MSA). The likelihood of wellbore crossovers and lease line infractions is 
then also reduced significantly.Wellbore placement inaccuracy in unconventional plays has not 
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been a major concern until in recent years, when drillers began placing horizontal wells closely 
spaced together. Modeling positional uncertainty and improving survey accuracy has been 
driven mostly by drilling professionals in order to mitigate anti-collision risk and keep wellbores 
within lease lines. However, this study shows that improved wellbore placement has further 
significant economic benefits by increasing reservoir drainage and providing more accurate data 
for spacing tests and reservoir models. 

 
Maus, S., & Croke, R., “Field Acceptance Criteria Based on ISCWSA Tool Error Models” 2014 

http://www.iscwsa.net/download/f7086db8-bce9-11e6-8ad6-1360ea316344/  
Abstract: not applicable for this slideshow.  
 

 
Stefan Maus, Shawn DeVerse, Marc Willerth, David Sweeney, Shawn Waldrop and Prabhas Nayak 
(2017) A Public Web API to Provide Dynamic Quality Control for the ISCWSA Error Models, ISCWSA 
46th General Meeting, San Antonio, TX, USA 

Abstract: not applicable for this product. 
 

Maus, S., and M. Nair (NOAA/NGDC) S. Okewunmi (Chevron), “Quantifying the uncertainty in global 
geomagnetic models.” 2010. 

http://www.iscwsa.net/download/485f5970-bded-11e6-98dd-5586628dffff/ 
Abstract: not applicable for this slideshow. 

 
Maus, S., M. Nair, B. Carande (MagVAR), S. Pham (ConocoPhillips) and B. Poedjono (Schlumberger). 
“Systematic and Random Contributions to the Disturbance Field (IFR 2).” 2014. 
http://www.iscwsa.net/download/a2ee56b8-b64d-11e6-99bb-e117362139ff/ 
 
Maus, S., and B. Poedjono. "Method To Predict Local Geomagnetic Disturbance Field And Its Practical 
Application." U.S. Patent Application 14/906,750, filed July 24, 2014. 
https://www.google.com/patents/WO2015013499A1?cl=en 

Abstract: A method for correcting geomagnetic reference field includes measuring Earth 
magnetic field elements at least one known geodetic position. Earth magnetic field elements are 
measured at a position proximate the location. A disturbance function is determined from the 
Earth magnetic field measurements made at the at least one known geodetic position. A 
magnetic disturbance field measurement transfer function is estimated between the at the at 
least one known geodetic and proximate positions to estimate a disturbance function at the 
proximate position. The estimated magnetic disturbance function is used to correct geomagnetic 
reference field or measurements made at the location. 

 
Poedjono, B., S. Maus, and C. Manoj. "Effective Monitoring of Auroral Electrojet Disturbances to Enable 
Accurate Wellbore Placement in the Arctic." In OTC Arctic Technology Conference. Offshore 
Technology Conference, 2014. https://www.onepetro.org/conference-paper/OTC-24583-MS 

Abstract: In measurement while drilling (MWD), wellbore azimuth is determined relative to the 
direction of the geomagnetic field. Converting this magnetic azimuth to a true azimuth requires 
accurate knowledge of the direction of the geomagnetic field at the point of measurement 
downhole. In the Arctic, MWD processing must include corrections for rapid changes in the 
geomagnetic field caused by auroral electrojet currents.?The auroral zone, those latitudes at 
which the aurora borealis (or the northern lights) occurs, is a region where the electric field of 
the magnetosphere precipitates along magnetic field lines into the ionosphere. At 100 km above 
the surface, this electric field drives auroral electrojet currents in the east/west direction, 
generating the strongest magnetic field disturbances on the planet. The direction of the 
geomagnetic field in the auroral zone can change by several degrees in less than an hour. Data 
from geomagnetic observatory and variometer stations can be analyzed to characterize the 
auroral electrojets and compensate for the disturbance. Knowledge of the spatial structure of 
the electrojets’ magnetic signature is essential for deploying a ground network of monitoring 
stations in the Arctic. This network provides the real-time geomagnetic infrastructure essential 
to support MWD operations, making it the most cost-effective technology available to achieve 
accurate wellbore placement in horizontal, relief well, and extended reach drilling, as well as in 
collision-avoidance applications.In one case study using historical data from two nearby 
observatories from 1995 to the present, the disturbance field was characterized and a time 
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series of maximum disturbances was derived and extrapolated to the year 2020. Maximum 
disturbance in the magnetic field was found to lag the maximum of solar activity by 
approximately two years, predicting the next maximum in 2015-2019. 

 
Poedjono, B., N. Beck, A. Buchanan, L. Borri, S. Maus, C. A. Finn, E. W. Worthington, and T. White. 
"Improved Geomagnetic Referencing in the Arctic Environment (Russian)." In SPE Arctic and Extreme 
Environments Technical Conference and Exhibition. Society of Petroleum Engineers, 2013. 
https://www.onepetro.org/conference-paper/SPE-166850-RU 

Abstract: Geomagnetic referencing uses the Earth's magnetic field to determine accurate 
wellbore positioning essential for success in today's complex drilling programs, either as an 
alternative or a complement to north-seeking gyroscopic referencing. However, fluctuations in 
the geomagnetic field, especially at high latitudes, make the application of geomagnetic 
referencing in those areas more challenging. Precise crustal mapping and the monitoring of 
real-time variations by nearby magnetic observatories is crucial to achieving the required 
geomagnetic referencing accuracy. The Deadhorse Magnetic Observatory (DED), located at 
Prudhoe Bay, Alaska, has already played a vital role in the success of several commercial 
ventures in the area, providing essential, accurate, real-time data to the oilfield drilling industry. 
Geomagnetic referencing is enhanced with real-time data from DED and other observatories, 
and has been successfully used for accurate wellbore positioning. The availability of real-time 
geomagnetic measurements leads to significant cost and time savings in wellbore surveying, 
improving accuracy and alleviating the need for more expensive surveying techniques. The 
correct implementation of geomagnetic referencing is particularly critical as we approach the 
increased activity associated with the upcoming maximum of the 11-year solar cycle. The DED 
observatory further provides an important service to scientific communities engaged in studies 
of ionospheric, magnetospheric and space weather phenomena. 

 
Poedjono, B., and X. Li. "Validation and application of magnetic anomalies for directional drilling." 
International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications 2011: 
International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Beijing, 
China, October 10–13, 2011. Society of Exploration Geophysicists, 2011. 
http://library.seg.org/doi/abs/10.1190/1.3659132 

Abstract: Accurate real‐time wellbore positioning is essential for today's complex drilling 
programs. Geomagnetics as an alternative to gyroscopic surveys for directional drilling may 
require use of all three components of the Earth's magnetic field: the main, crustal and 
disturbance fields. This work concerns the crustal field. We have developed a technique for 
computation of the vector crustal magnetic field at depths from the scalar TMI (Total Magnetic 
Intensity) anomaly observed on or above the surface of the Earth. We validate our technique by 
comparing to gyroscopic readings in the White Rose field offshore eastern Canada, and then 
show its application to the Jubilee field offshore Ghana. 

 
 
Poedjono, B., I. B. Olalere, I. Shevchenko, F. I. Lawson, S. Crozier, and X. Li. "Improved Drilling 
Economics and Enhanced Target Acquisition through the Application of Effective Geomagnetic 
Referencing." In SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum 
Engineers, 2011. https://www.onepetro.org/conference-paper/SPE-140436-MS 

Abstract: For a deepwater operator facing the challenges of directional drilling and wellbore 
stability, surveying with high spread costs in excess of USD 1 million per day, any approach 
which promises to reduce or eliminate cost and risk has great potential benefit. This paper 
showcases how careful planning, a fit-for-purpose survey program, and, most importantly, an 
effective, real-time geomagnetic referencing service (GRS) can significantly improve the 
operator's ability to hit both geological and financial targets. The authors describe recent 
breakthrough improvements in the accuracy of GRS techniques and present a case study to 
illustrate the benefits of this approach for the industry, especially in deepwater operations. 

 
Poedjono, B., N. Beck, A. Buchanan, J. Brink, J. Longo, C. A. Finn, and E. W. Worthington. 
"Geomagnetic referencing in the arctic environment." In OTC Arctic Technology Conference. Offshore 
Technology Conference, 2012. https://www.onepetro.org/conference-paper/OTC-23729-MS 

Abstract: Geomagnetic referencing is becoming an increasingly attractive alternative to north-
seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in 
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today's complex drilling programs. However, the greater magnitude of variations in the 
geomagnetic environment at higher latitudes makes the application of geomagnetic referencing 
in those areas more challenging. Precise, real-time data on those variations from relatively 
nearby magnetic observatories can be crucial to achieving the required accuracy, but 
constructing and operating an observatory in these often harsh environments poses a number 
of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory 
(DED), located in Deadhorse, Alaska, was created through collaboration between the United 
States Geological Survey (USGS) and a leading oilfield services supply company. DED was 
designed to produce real-time geomagnetic data at the required level of accuracy, and to do so 
reliably under the extreme temperatures and harsh weather conditions often experienced in the 
area. The observatory will serve a number of key scientific communities as well as the oilfield 
drilling industry, and has already played a vital role in the success of several commercial 
ventures in the area, providing essential, accurate data while offering significant cost and time 
savings, compared with traditional surveying techniques. 

 
Poedjono, B., S. A. Rawlins, C. K. Singam, A. Tweel, A. Dubinsky, R. Rakhmangulov, and S. Maus. 
"Addressing Wellbore Position Challenges in Ultra-Extended-Reach Drilling in Russia’s Far East." In 
SPE Paper 160784-PP presented at Russian Oil and Gas Exploration & Production Technical 
Conference and Exhibition, Moscow, Russia, pp. 16-18. 2012. 
http://ebooks.wdcb.ru/2013/2013BS012/SESSION_5/Singam.pdf 

Abstract: Drilling in Russia's Far East has always been associated with industry-defining ultra-
extendedreach drilling. With the emergence of more powerful drilling rigs and advances in 
measurementand logging-while-drilling (MWD and LWD) tools, these wellbores can be 
designed to reach farther. Therefore, accurately penetrating and exploiting distant reservoirs 
have resulted in critical dependence on high-accuracy surveying techniques. Successful target 
penetration and meeting anticollision requirements without the need for shutting production in 
nearby wells are key proponents for a geomagnetic referencing service (GRS). Geomagnetic 
referencing is the technique to minimize the lateral position uncertainties when using MWD. This 
is particularly important for wellbores that extend the boundary of the drilling envelope with 
stepouts greater than 13 km. The wellbore azimuth accuracy is highly dependent on the quality 
of the magnetic data used to produce the geomagnetic reference model. This model 
characterizes the absolute magnitude and vector direction of the natural magnetic field for every 
point along the wellbore. Representation of the local crustal magnetic contribution is key to the 
process since it constitutes a significant error in the lateral wellbore position. Since 2011, a new, 
highly accurate geomagnetic referencing methodology has been used in Russia’s Far East. 
Global contributions are accounted for by a high-definition geomagnetic model (HDGM). In 
addition, the local crustal magnetic anomaly is represented by 3D ellipsoidalharmonic functions 
tracking the shape and depth of the Earth, thereby providing seamless integration with HDGM 
and avoiding distortions faced by conventional plane-Earth approximations. A comparison with 
the previous industry standard shows improvements of 0.5° in azimuth determination. This high-
degree geomagnetic technique will serve well for a number of upcoming developments in 
Russia’s Far East, continuing to push the drilling envelope and providing essential, accurate 
wellbore positioning, while offering significant time and cost savings. 

 
Roger Ekseth , Torgeir Torkildsen, Andrew G. Brooks, John Lionel Weston, Erik Nyrnes, Henry 
Ferguson Wilson and Kazimir Kovalenko, “High integrity wellbore surveys: methods for eliminating gross 
errors.” In SPE/IADC Drilling Conference, 20-22 February, Amseterdam, The Netherlands. Society of 
Petroleum Engineers. 2007. https://www.onepetro.org/conference-paper/SPE-105558-MS  

Abstract: An earlier paper by the same authors, SPE 1037341, pointed out the potential safety 
and commercial costs of unreliable directional survey data. It described how a significant degree 
of reliability can be achieved with the application of quality control checks internal to the 
directional data, but it also identified the fact that such checks fall short of providing 
comprehensive reliability assurance. This paper documents weaknesses in conventional 
directional survey quality control (QC) procedures through theoretical considerations, statistical 
analyses of real survey data, and real examples of failed surveys that have made it through 
conventional QC procedures without detection. The paper defines principles for survey 
programme design and implementation to eliminate these weaknesses. It proposes a new set 
of minimum requirements for survey validation, which, in general, incorporate the need for an 
overlapping verification survey or other independent observation. This requirement is not 
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generally acknowledged in most of today's directional surveying QC procedures, which may be 
too weak to ensure the validity of a given error model and thus the integrity of the final well 
survey. This paper also discusses how analysis of a sufficiently large quantity of data, with the 
recommended QC methods applied, allows validation and refinement of the error model. This 
paper is the product of a collaborative work in the SPE Wellbore Positioning Technical Section 
(WPTS). 

 
Roger Ekseth , Torgeir Torkildsen, Andrew G. Brooks, John Lionel Weston, Erik Nyrnes, Henry 
Ferguson Wilson and Kazimir Kovalenko, “The reliability problem related to directional survey data.” In 
IACDC/SPE Asia Pacific Drilling Technology and Exhibition, 13-15 November, Bangkok, Thailand. 
Society of Petroleum Engineers, 2007 https://www.onepetro.org/conference-paper/SPE-103734-MS  
 

Abstract: The validity of error model predictions of wellbore position accuracy is highly 
dependent on the application of rigorous quality control procedures to the survey data. Concern 
has been expressed within the SPE Wellbore Positioning Technical Section (WPTS, formerly 
ISCWSA) that failure to apply the necessary operational procedures may be commonplace, 
raising questions about the reliability of the survey data so generated. Directional survey data 
that does not conform to its model's predictions represents a risk in terms of lost production, 
damage to infrastructure and loss of life. This paper lists all sources of error, describes internal 
data checks that are capable of identifying many of them, and highlights those that are missed 
and which will therefore require alternative QC measures. Real wellbore survey data are used 
to illustrate how the use of inadequate QC procedures can lead to invalid survey data being 
accepted as valid. The paper is the product of collaborative work within the SPE WPTS. 

 
Russell, J. P., G. Shiells, and D. J. Kerridge. "Reduction of well-bore positional uncertainty through 
application of a new geomagnetic in-field referencing technique." In SPE Annual Technical Conference 
and Exhibition. Society of Petroleum Engineers, 1995. https://www.onepetro.org/conference-
paper/SPE-30452-MS 

Abstract: A new In-Field Referencing (IFR) technique, for measuring local geomagnetic-field 
parameters at, or very close, to the well site is described. IFR is shown to enable reduction in 
the uncertainty associated with the estimates of geomagnetic field values, normally obtained 
from main-field geomagnetic models. This significantly reduces the magnitude of certain critical 
directional uncertainty error terms which are inputs to survey tool accuracy performance models, 
reducing positional uncertainty for well-planning purposes.Logistical problems and high unit-
cost have precluded IFR development to date, but recent innovative thinking which has evolved 
from dialogue between oil and drilling-service companies and the scientific/academic 
community has refined the concept and greatly improved the feasibility. 

 
Sabaka, T. J., Olsen, N. and Langel, R. A. “A comprehensive model of the quiet-time, near-Earth 
magnetic field” Geophysical Journal International, 151: 32–68. 2002. 
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-246X.2002.01774.x/abstract  

Abstract: The near-Earth magnetic field is caused by sources in the Earth's core, ionosphere, 
magnetosphere, lithosphere and from coupling currents between the ionosphere and the 
magnetosphere, and between hemispheres. Traditionally, the main field (low degree internal 
field) and magnetospheric field have been modelled simultaneously, with fields from other 
sources being modelled separately. Such a scheme, however, can introduce spurious features, 
especially when the spatial and temporal scales of the fields overlap. A new model, designated 
CM3 (Comprehensive Model: phase 3), is the third in a series of efforts to coestimate fields from 
all of these sources. This model has been derived from quiet-time Magsat and POGO satellite 
and observatory hourly means measurements for the period 1960–1985. It represents a 
significant advance in the treatment of the aforementioned field sources over previous attempts, 
and includes an accounting for main field influences on the magnetosphere, main field and solar 
activity influences on the ionosphere, seasonal influences on the coupling currents, a priori 
characterization of the influence of the ionosphere and the magnetosphere on Earth-induced 
fields, and an explicit parametrization and estimation of the lithospheric field. The result is a 
model that describes well the 591 432 data with 16 594 parameters, implying a data-to-
parameter ratio of 36, which is larger than several popular field models. 
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Sabaka, T. J., Olsen, N. and Purucker, M. E., “Extending comprehensive models of the Earth's magnetic 
field with Ørsted and CHAMP data.” Geophysical Journal International, 159: 521–547. 2004 
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2004.02421.x/abstract  

Abstract: A new model of the quiet-time, near-Earth magnetic field has been derived using a 
comprehensive approach, which includes not only POGO and Magsat satellite data, but also 
data from the Ørsted and CHAMP satellites. The resulting model shows great improvement over 
its predecessors in terms of completeness of sources, time span and noise reduction in 
parameters. With its well separated fields and extended time domain of 1960 to mid-2002, the 
model is able to detect the known sequence of geomagnetic jerks within this frame and gives 
evidence for an event of interest around 1997. Because all sources are coestimated in a 
comprehensive approach, intriguing north–south features typically filtered out with other 
methods are being discovered in the lithospheric representation of the model, such as the S 
Atlantic spreading ridge and Andean subduction zone lineations. In addition, this lithospheric 
field exhibits significantly less noise than previous models as a result of improved data selection. 
The F-region currents, through which the satellites pass, are now treated as lying within 
meridional planes, as opposed to being purely radial. Results are consistent with those found 
previously for Magsat, but an analysis at Ørsted altitude shows exciting evidence that the 
meridional currents associated with the equatorial electrojet likely close beneath the satellite. 
Besides the model, a new analysis technique has been developed to infer the portion of a model 
parameter state resolved by a particular data subset. This has proven very useful in diagnosing 
the cause of peculiar artefacts in the Magsat vector data, which seem to suggest the presence 
of a small misalignment bias in the vector magnetometer.  

 
Sabaka, T., Olsen, N., Tyler, Robert. And Kuvshinov, Alexey; “CM5, a pre-Swarm comprehensive 
geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data.” 
Geophysical Journal International, Volume 200, Issue 3, 1596–1626. 2015. 
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggu493  

Abstract: A comprehensive magnetic field model named CM5 has been derived from CHAMP, 
Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 
January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently 
launched constellation of three satellites to map the Earth's magnetic field. The CI technique 
includes several interesting features such as the bias mitigation scheme known as Selective 
Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector 
measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has 
allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-
track difference data yielding resolution levels up to spherical harmonic degree 107, and has 
allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside 
data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory 
daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields 
in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 
tidal constituents may be used as validation tools for future Swarm Level-2 products coming 
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Abstract: A triaxial fluxgate magnetometer for use on the sea floor has been built and tested. 
This magnetometer, which is small and easy to handle, is housed in a pressure-tight glass 
sphere. The instrument is equipped with a timed release which enables free-fall installation and 
automatic recovery. Maximum period of measurement is 60 days with 3-minute samplings and 
the accuracy of the measurement is ±0.8nT. This corresponds to the error of ±1 least significant 
bit unavoidable in digital conversion using a 16-bit AD converter. 
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Referencing (IIFR) method in which: (a) absolute local geomagnetic field data is obtained by 
spot measurement of the earth's magnetic field at a local measurement site R which is 
sufficiently close to the drilling site S that the measurement data is indicative of the earth's 
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magnetic field at the drilling site S but which is sufficiently remote from the drilling site S that the 
measurement data is unaffected by magnetic interference from the drilling site and other man-
made installations; (b) time-varying geomagnetic field data is obtained by combining the 
absolute local geomagnetic field data with data indicative of variation of the geomagnetic field 
with respect to time obtained by monitoring variation of the earth's magnetic field with respect 
to time at a remote monitoring site P1, P2; (c) downhole magnetic field data is obtained by 
monitoring by means of a surveying instrument the magnetic field in the vicinity of the borehole 
at a series of locations along the borehole; and (d) the orientation of the borehole is determined 
from the downhole magnetic field data and the time-varying geomagnetic field data. Such a 
survey method takes into account short-term variations in the geomagnetic field caused by 
electrical currents in the ionosphere and is therefore more accurate than known survey methods. 
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 Abstract: Not applicable for this slideshow 
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space 50, no. 11-12 (1998): 895-903. https://www.jstage.jst.go.jp/article/eps1998/50/11-12/50_11-
12_895/_article 

Abstract: A new type of Sea Floor Electro Magnetic Station (SFEMS) has been newly developed 
by adding a magnetotelluric (MT) variograph to its prototype built previously (Toh and Hamano, 
1997). New SFEMS is able to conduct long-term electromagnetic (EM) observations at the 
seafloor, which is one of the principal goals of the Ocean Hemisphere Project (OHP). Long-term 
seafloor EM observations enable us to probe into the deep Earth (both the mantle and the core) 
by improving the spatial coverage of the existing EM observation network. The SFEMS has 
been tested in three sea experiments to yield 3 components of the geomagnetic field, 2 
horizontal components of the geoelectric field and 2 components of tilts in addition to the 
absolute geomagnetic total force. The SFEMS is designed for measuring these EM signals at 
the seafloor continuously for as long as 2 yrs. The SFEMS mainly consists of the following three 
parts: (1) An Overhauser proton precession magnetometer for the absolute measurements of 
the geomagnetic total force with a possible bias of less than 10 nT. (2) An MT variograph that 
measures the rest of the EM components and tilt. (3) An Acoustic Telemetry Modem (ATM) that 
allows us to control/monitor the seafloor instrument as well as data transmission at the maximum 
rate of 1200 baud. Construction of seafloor EM observatories in regions where significant EM 
data have never been collected is now quite feasible by development of the SFEMS. 
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Abstract: A method for modelling the crustal magnetic field vector from total intensity data has 
been used to determine the magnetic field snapshot required for Interpolation In-Field 
Referencing (IIFR). The method has been validated in a number of ways, including comparison 
of magnetic and gyroscopic survey data in three UK fields. 
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Abstract: In this paper a new method for predicting wellbore position uncertainty which responds 
to the current needs of the industry is described. An error model applicable to a basic directional 
measurement while drilling (MWD) service is presented and used for illustration. As far as 
possible within the limitations of space, the paper is a self-contained reference work, including 
all the necessary information to develop and test a software implementation of the method. The 
paper is the product of a collaboration between the many companies and individuals cited in the 
text. 
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Abstract: Fluids entering the subduction zone play a key role in the subduction process. They 
cause changes in the dynamics and thermal structure of the subduction zone1, and trigger 
earthquakes when released from the subducting plate during metamorphism. Fluids are 
delivered to the subduction zone by the oceanic crust and also enter the oceanic plate as it 
bends downwards at the plate boundary. However, the amount of fluids entering subduction 
zones is not matched by that leaving through volcanic emissions or transfer to the deep mantle, 
implying possible storage of fluids in the crust. Here we use magnetotelluric data to map the 
entire hydration and dehydration cycle of the Costa Rican subduction zone to 120 km depth. 
Along the incoming plate bend, we detect a conductivity anomaly that we interpret as sea water 
penetrating down extensional faults and cracks into the upper mantle. Along the subducting 
plate interface we document the dehydration of sediments, the crust and mantle. We identify an 
accumulation of fluids at ~20–30 km depth at a distance of 30 km seaward from the volcanic 
arc. Comparison with other subduction zones indicates that such fluid accumulation is a global 
phenomenon. Although we are unable to test whether these fluid reservoirs grow with time, we 
suggest that they can account for some of the missing outflow of fluid at subduction zones. 
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8. Appendix - Technical Notes and Previous Work 

8.1 General 

In this section, we expand in more depth regarding existing work on IFR and 
disturbance field characterization and mitigation methods. Each is used to reduce the 
error of geomagnetic reference fields used during horizontal drilling operations.  
 

8.2 Positional Error Models 

There are numerous error sources associated with MWD survey measurements and 
each error source contributes in some form to the magnitude of uncertainty that 
propagates along the computed wellbore trajectory. The Industry Steering Committee 
for Wellbore Survey Accuracy (ISCWSA) developed a framework for quantifying the 
magnitude of uncertainty, described by Williamson (2000). The Operator’s Wellbore 
Survey Group (OWSG), a sub-committee of the ISCWSA, continued development on 
the original error model and publishes a set of Instrument Performance Models that 
enable the computation of ellipses of uncertainty for specific surveying methods. This 
consolidated set is referred to as the OWSG set of tool codes. As of this study, this set 
of tool codes has been revised once, resulting in OWSG Rev-2. The standard MWD 
error model in OWSG Rev-2 has been made consistent with the standard MWD error 
model in ISCWSA Rev-4. Note that the OWSG set contains a much larger set of tool 
codes than ISCWSA Rev-4. The OWSG tool codes are described in detail in Grindrod 
et al., 2016. 
 
One of the largest sources of positional error is the uncertainty in the geomagnetic 
reference field, in particular when using global geomagnetic reference models. 
Confidence limits for geomagnetic reference models were derived by (Macmillan, 
McKay & Grindrod, 2009). Characterizations of geomagnetic error sources were further 
provided for global geomagnetic field models by Maus et al., (2010). The disturbance 
field error model coefficients for OWSG-Rev2 were derived and presented by Maus et 
al. (2014). 
 

8.3 Solving MWD Challenges With IFR 

There are numerous cases which already demonstrate challenges of MWD and the 
mitigation of these challenges utilizing IFR. Jeanne d’Arc basin off the coast of Eastern 
Canada, where extensive faulting makes precise wellbore positioning especially 
challenging. The newer IFR methods for correcting errors accurately are required to 
enable drilling into multiple small geological targets and avoid costly collisions between 
adjacent wellbores (Poedjono et al. 2011). All together, these challenges require more 
accurate surveys, improved descriptions of positional uncertainty, and a reduction in 
error ellipse size. For drillers, this translates into the ability to hit smaller targets, greater 
drillability, and a potentially significant reduction in drilling time and cost. In addition, 
geologists and geophysicists benefit from having higher confidence in the ability to 
penetrate the geological targets successfully (ibid). 
 
Accurate wellbore positioning is also a significant challenge in the Frade field, a deep-
water heavy oil project offshore Brazil (Poedjono et al. 2012). This project has been 
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historically, technically, and economically challenging due to the inherent subsurface 
and surface complexities, which alone might have prevented the development of this 
asset, as the structure is a low-relief anticline with two main fault blocks, consisting of 
three stacked reservoirs, and spanning an area of 20 km2. The unique challenge in 
magnetic surveying in this region is the wide discrepancy between downhole tool 
readings and the British Geological Survey (BGS) Global Geomagnetic Model 
(BGGM), which was previously used to provide the magnetic reference field at a coarse 
400-km resolution. An improved understanding of natural variations in the local 
magnetic field is essential for a successful development of the field (ibid). In the project 
outlined in Successful Application of Geomagnetic Referencing for Accurate Wellbore 
Positioning in Deepwater Project Offshore Brazil (Poedjono et al. 2012), collaboration 
among operator, contractors and academic experts, and the development of the High- 
Definition Geomagnetic Model (HDGM) by the United States National Geophysical 
Data Center improved the spatial resolution to 30 km. Integration with the Bacia de 
Campos aeromagnetic survey (the methodology of aeromagnetic surveying is 
presented elsewhere) helped account for the entire spatial spectrum of the 
geomagnetic field, down to the kilometer scale (ibid). This integration allowed for higher 
accuracy wellbore positioning during drilling. 
 

8.4 Creating An IFR Model 

As previously noted, three of the four contributing factors of the magnetic field are 
accounted for by IFR. IFR makes use of linear filter theory, as detailed by William C. 
Dean (1958), which explains the process of distorting geophysical data in desirable 
ways, using analytic continuations, second derivative, and smoothing techniques to 
suppress some characteristics of the data while emphasizing others that were not 
evident on the original map. Objects like mountains alter aeromagnetic surveys through 
their detection of long wavelength anomalies, which must be managed through 
downward continuation mathematics. At the same time, short wavelength anomalies 
present in the ground beneath the mountains, such as a pipeline or mineral deposit, 
may be missed without amplification through this data filtration method. 
 
Earlier IFR methods were based on flat-Earth approximations using Fourier transforms 
(e.g. Dean 1985; Russel Shiells and Kerridge, SPE 30452, 1995) or the equivalent 
source method (Dampney 1969; Macmillan & Billingham, ISCWSA-40, 2014). 
However, according to Maus et al. (2017), creating an IFR model requires capturing 
the full spectrum of spatial wavelengths of the geomagnetic field. Satellite 
measurements account for the long-wavelength (266-2,500 kilometer) crustal field as 
well as the main field, secular variation and steady external field. A local magnetic 
survey provides the shorter wavelengths by accurately mapping local crustal field 
anomalies. To provide a model that is continuous across the geomagnetic spectrum, 
the local magnetic survey is extended by merging it with a larger regional survey. The 
merged grid is then further extended to cover the longest wavelengths by merging with 
satellite measurements. The merging of these different datasets must be evaluated at 
the same altitude and must make seamless boundary transitions.  
 
While there are often global surveys from which data can be drawn to create a three-
dimensional IFR model -- one global model being the British Geological Survey (BGS) 
Global Geomagnetic Model (BGGM) (Poedjono et al.) -- some areas are particularly 
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difficult to account for due to weak or inaccurate data and, in some regions, there may 
be no data at all. In these instances, commissioning an aeromagnetic survey can allow 
directional drilling companies region-specific data tailored to lease agreement 
boundaries. Aeromagnetic surveys, however, present unique challenges due to 
topography and altitude that require retroactive data analysis before the surveys can 
be used for disturbance field detection and error modeling.  
 
Local magnetic surveys only specifies the total strength of the magnetic field vector, 
and MWD requires accurate modeling of the direction of the magnetic field vector. It is 
possible to accurately determine the direction of the magnetic field by representing its 
vector as the gradient of a scalar potential using ellipsoidal harmonic basis functions.  
 
Brazil’s deep-water project offshore provides one example of aeromagnetic surveying, 
resulting in initial large discrepancies between downhole tool readings and the British 
Geological Survey (BGS) Global Geomagnetic Model (BGGM) (Poedjono et al.). A new 
method of mapping the natural variations was developed off the High-Definition 
Geomagnetic Model (HDGM) by the United States National Geophysical Data Center, 
which improved the spatial resolution to 30 km. By integrating this large-scale magnetic 
field study with the Bacia de Campos aeromagnetic survey, scientists accounted for 
the entire spatial spectrum of the geomagnetic field, down to the kilometer scale (ibid), 
thus resulting in improved directional accuracy and generally a more vivid 
representation of the drill’s location three-dimensional space at a given moment in time. 
 
The criticality of wavelength variety in creating an IFR model has led scientists and 
industry leaders to seek multiple sources of data to mitigate disturbance field anomalies 
and correct uncertainty values (Toh et al. 1998, Toh et al. 2010, Maus et al. 2015, 
Poedjono et. al. 2014, Macmillan et al. 2009). For sub-ocean and offshore drilling 
operations, sheer distance from the shore previously limited drillers’ capability of 
maintaining directional accuracy (Williamson et al. 1998), yet the integration of 
Interpolated IFR (IIFR) methodology as well as the use of data generated from remote 
observatories has proven especially valuable (Macmillan et al. 2009), later allowing 
analysts the capability of manipulating and combining data from a plethora of sources, 
thus strengthening the accuracy of an IFR model. 
 

8.5 Case Study In Disturbance Field Mitigation 

Disturbance field mitigation has been employed to monitor and correct directional 
surveys at the Haltenbanken area of the Norwegian Sea over a period of about 2 years 
with an increasing number of geophysical observation stations in Norway and 
Denmark, maintained by the Tromsø Geophysical Observatory (TGO) (Edvardson et 
al. 2013). Because the magnetometer cannot be mounted on the rig and seabed 
magnetometers are not easily available and tested in the water surrounding Norway, 
the TGO are forced to rely on magnetometers onshore, often as much as 100 km away, 
potentially compromising the accuracy of the data collected (Edvardson et al. 2013, 
Edvardson et al. 2014, Williamson 1998). Haltenbanken is located approximately 200 
km west of the Norwegian coast at a latitude of 65°N, where magnetic-storm activity 
often has a significant effect on directional surveying. A monitoring station was set up 
on the coast at the same geomagnetic latitude as Haltenbanken and, to test the idea 
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that magnetic disturbances are similar along constant magnetic latitude, an additional 
monitoring station was established 200 km east of the main station 
 
A main result of this case study by Edvardson et al. (2013) was positive confirmation 
of the following: the theory of similar and nearly simultaneous magnetic disturbances 
along the geomagnetic latitude of several hundreds of kilometers; the locations of 
monitoring stations relative to the drill site are important for effective monitoring of 
electro-jet currents (Poedjeno et al. 2014); placing the monitoring station on the same 
geomagnetic latitude as the drill site provides better correlation of total intensity and 
dip angle, and allows useful correlation of all three magnetic-field elements at distances 
up to 500 km from the rig site; disturbance field correction methodology can be usefully 
applied to distant off-shore drill sites at high latitudes, improving directional control and 
increasing wellbore-survey accuracy for MWD operations. 
 

8.6 The Disturbance Function Method 

While the IIFR methods performs a spatial interpolation between surrounding 
observatories without taking specific properties of the disturbance field variations at the 
drill site into account, the patent pending disturbance function (DF) method (Maus and 
Poedjono. 2015) relates the remote observatories to time series at the drill site from a 
temporarily deployed station. Such temporary deployments without real-time 
connection for a limited period of about 3 months are relatively easy to carry out and 
therefore cost effective. By making use of the “training” data set from the drill site, the 
method achieves significantly higher accuracy than IIFR, as was demonstrated in 
predicting the values at the Deadhorse Observatory from the Barrow observatory. In 
see Figure 8.1 the shaded areas represent models with changing degree and 
resolution. The latest BGGM extends to degree 133. The red shaded area corresponds 
to the part that is missing from the field model and is referred to as the omission error.  
 
Given the proximity the Deadhorse Field to the arctic, the employment of disturbance 
function corrections results in the ability to combat these high-latitude challenges, 
which is presented in greater detail in the disturbance field characterization field 
section. What is critical is the collection of accurate data collection and analysis in these 
near-polar regions, where magnetic disturbances are particularly prominent. 
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Figure 8.1:  Global power geomagnetic power spectrum 

 

8.7 Remote Observation Through Land & Seafloor Magnetometers 

Since as early as the early 1980’s, construction of seafloor electromagnetic (EM) 
observatories has been pursued for scientific studies offshore Japan (Segawa et al., 
1983), especially in regions where significant EM data have never been collected. 
These techniques have become increasingly feasible due to the development of the 
Sea Floor Electro-Magnetic Station (SFEMS) (Toh et al. 1998, Toh et al. 2010). Two 
kinds of observations are now available: real-time monitoring of seafloor EM fields by 
deploying semi-permanent infrastructure and off-line measurements by long-life pop-
up type instruments. Monitoring of Earth’s geoelectric field by employing trans-ocean 
submarine cables (Lanzerotti et al., 1985) is a typical example of the former while the 
latter is accomplished by several international cooperative projects including the 
Mantle Electromagnetic and Tomography (MELT) experiment (Forsyth and Chave, 
1994). 
 
In Japan, the Ocean Hemisphere Project (OHP) has been in operation since 1996, 
which is also a seismic-EM joint project like MELT to probe into the deep Earth through 
the ocean window. Even more recently, similar studies on ocean-based seismology 
also utilize SFEMS, as these tools are capable of measuring both scalar and vector 
geomagnetic fields in addition to the seafloor instrument’s precise attitudes. This 
makes it a valuable tool in detecting the so-called oceanic dynamo effect (Toh et al., 
2016). These stations are able to conduct long term electromagnetic (EM) observations 
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at the seafloor over the course of multiple years, which is one of the principal goals of 
the OHP. Long-term seafloor EM observations enable stakeholders to probe into the 
deep Earth (both the mantle and the core) by improving the spatial coverage of the 
existing EM observation network, while generating historical data that can be used to 
mitigate disturbance (Toh et al. 1998, Toh et al. 2010).  
 
Placing, maintaining, and receiving data from an SFEMS adds complexity to sub ocean 
directional magnetic MWD operations, yet, as shown previously, the benefits of 
properly-placed wellbores are numerous (Maus et al. 2017). To more reliably predict 
the disturbance field at a drill site using in-situ measurements on the seafloor, three 
ocean bottom vector magnetometers (OBMs) must be deployed near the drill site to 
monitor the disturbance field over a period of 6 months (Maus et al. 2015). This enables 
the computation of a disturbance function relating the measurements of multiple 
neighboring variometers. Two disturbance field prediction methods can be compared 
in such a study: (1) a simple linear interpolation between the surrounding stations using 
the traditional method of Interpolated In-Field Referencing (IIFR), versus (2) the 
disturbance field function (DFF) method (ibid). Such a study is described in the later 
sections of this report. 
 
Deploying a seaflooor observatory without real-time capability is relatively simple and 
can be very cost effective. Geomar has developed an ocean bottom magnetometer 
(OBM) featuring a triaxial fluxgate (Jegen & Edwards, 1998, Worzewski et al., 2011). 
This magnetometer, which is small and easy to handle, is housed in a pressure-tight 
glass sphere and is equipped with a timed release which enables free-fall installation 
and automatic recovery. The maximum period of measurement is 90 days with 3-
minute samplings and the accuracy of the measurement is±0.8 nT. This corresponds 
to the error of±1 least significant bit unavoidable in digital conversion using a 16-bit AD 
converter. Geomar has developed a similar product in more recent years, which can 
perform two types of experiments: Magnetotelluric (MT) measurements and Controlled 
source electromagnetic (CSEM) measurements (Jegen-Kulczar 2014).  
 
A more recent development in robotic autonomous marine vehicles is the Wave Glider 
by Liquid Robotics (Monk et al. 2014), which shows promising results for disturbance 
field monitoring. It can either directly measure variations in the total magnetic field, or 
it can act as a real-time satellite relay by using acoustic signals transponded to the 
vehicle from a seafloor magnetometer to the ocean-surface, and then sent by satellite 
to the desired location, allowing for real-time data collection (Poedjono, B., et al. 2014).  
 
In a case study by Stefan Maus and Benny Poedjono (2014), the mean ocean depth 
where the measurements were taken as deep as 4837 meters. Working in tandem, two 
Wave Gliders collected electromagnetic data transmitted via satellite as the vehicle 
follows a rectangular pattern in the ocean. This movement accounts for the inability to 
keep the unit stationary. Differences in the crustal field along the rectangle result in the 
measurement of a crustal magnetic gradient. This gradient has to be subtracted from 
the data before treating the residuals as time variations of the total magnetic field. The 
data in the southwest corner of Figure 8.2 has lower magnitudes than that in the 
northeast corner. The second variation is an additional vertical scatter at all the grid 
points. The plane displayed above represents the post-deployment data analysis to 
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remove data leaks due to spatial gradient caused by UAV’s movement through ocean, 
as drifting can cause data to become unviable.  
 
The data in Figure 8.2 demonstrates the estimated crustal gradient after being 
removed from the measured data to recover time variations of the disturbance field. 
Red lines show original measurements, blue lines represent the corrected data from 
this procedure, and the green line shows the geomagnetic data at HON observatory. 
Once this crustal contamination is removed, the RMS error between the vehicle and 
HON observatory decreases from 11.2 nT to 1.9 nT (Poedjono, B., et al. 2014) 

 

Figure 8.2:  Estimated crustal gradient over region of Waveglider motion (Maus et al.) 
2014 

 
Oscillations in the original data as seen in Figure 8.3 are due to the vehicle sampling 
the crustal field on its rectangular paths. If the dimension of the vehicle’s cruising 
rectangle is larger than the depth of the sources of the crustal field or any man-made 
metallic installations on the seafloor, the strong crustal gradient may be difficult to 
remove, even when magnetic disturbance field activity is moderate. In this case, data 
from another platform (for example, an observatory) may be used to first remove the 
time variations commonly present in both the data sets, before attempting to fit and 
remove the crustal field effects (Poedjono, B., et al. 2014). 
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Figure 8.3:  Disturbance measured by Waveglider (Maus et al. 2014) 

 
Land based observatories in Alberta, Canada were found to provide special value 
when responding to electromagnetic storm disturbances for Meanook in March 2015 
(Figure 8.4). Much like in the aforementioned Haltenbanken area of the Norwegian Sea 
(Evardsen et al. 3013), these time-dependent current fluctuations in the Earth's 
ionosphere cause inaccuracies in wellbore directional surveying, which only increases 
at higher latitudes. Although monitoring and correction are possible, they become less 
valid as the distance between the monitoring site and the rig site increases, which is a 
particular problem for offshore drill sites. 
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Figure 8.4: Measured disturbance field at Deadhorse (black) with IIFR (blue) and 
disturbance function (red) prediction from BRW, located 300 km to the 
west. 
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• Geoscience Australia (Australia) 

• China Earthquake Administration (China) 

• Institute of Geophysics of the Vietnamese Academy of Science and Technology 
(Vietnam) 

• Royal Meterological Institute of Belgium (Belgium) 

• Observatori de l'Ebre - Instituto Geografico Nacional (Spain) 

• Ludwig Maximilians University Munich (Germany) 

• Geophysical Institute of Grocka (Serbia) 

• South African National Space Agency (South Africa) 

• Geophysical Institute of Slovak Academy of Sciences (Slovakia) 

• Instituto Geofisico del Perú (Peru) 

• National Geophysical Research Institute (India) 

• Dirección Meteorológica de Chile (Chile) 
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• Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy 
of Sciences (Russia) 

• Earthquake Research Institute (Turkey) 

• Japan Meterological Agency (Japan) 

• Institute of Geophysics of the National Academy of Sciences of Ukraine 
(Ukraine) 

• South African National Space Agency (South Africa) 

• Directorate General of Telecommunications 

• Institute of Cosmophysical Researches and Radio Wave Propagation-RAS 
(Russia) 

• Geodetic and Geophysical Research Institute of the Hungarian Academy of 
Sciences (Hungary) 

• Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences 
(Germany) 

• Finnish Meteorological Institute (Finland) 

• Altay-Sayan Branch of Geophysical Survey of Siberian Branch of the Russian 
Academy of Sciences (Russia) 

• Bulgarian Academy of Sciences (Bulgaria) 

• Institute of Geology and Mineral Exploration (Greece) 

• Institute of Geophysics of the Vietnamese 

• Servicio Meteorológico Nacional (Argentina) 

• National Centre for Geophysical Research (Lebanon) 

• Institute of Geological and Nuclear Sciences Limited (New Zealand) 

• Real Instituto y Observatorio de la Armada (Spain) 

• Sodankyla Geophysical Observatory, University of Oulu (Finland) 

• Geological Institute of Romania (Romania) 

• Centre de Recherche en Astronomie (Algeria) 

• Institut et Observatoire Géophysique d'Antananarivo (Madagascar) 

• Instituto de Geofisica - Universidad Nacional Autonoma de México (Mexico) 

• Geological and Geophysical Institute of Hungary (Hungary) 

• Universidad Nacional de la Plata (Argentina) 

• The Irish Meteorological Service (Ireland) 

• Arctic and Antarctic Research Institute (Russia) 

• Observatorio Nacional (Brazil) 

• Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS 
(Russia) 

• UiT, The Arctic University of Norway 

• Various small airstrip operators 


