

Guideline to Subsea Integrity Management

PTIL webinar 22nd June 2021

Ian MacLeod - Technical Director Thomas Garten - Reliability SME

Industry challenges

Ageing subsea assets and tie-in of new fields to existing infrastructure

Information and knowledge transfer to new generations of NCS Engineers COVID-19 constraint on operations and the supply chain Quality in deliverables and operations through volatile oil price

A presentation by Wood.

Subsea System Scope Overview (figure 1-1)

Wellhead to Topside ESDV

- HC Pressure Containing Components
- Subsea Pipelines, Rigid Risers and Connection Systems
- Flexible Pipe Risers and Flowlines
- Valves
- XMTs and Wellheads

communication

/kəmju:nɪˈkeɪʃ(ə)n/

noun

 the imparting or exchanging of information by speaking, writing, or using some other medium. "television is an effective means of communication"

Lignende: (transmission) (imparting) (conveying) (reporting) (presenting

 means of sending or receiving information, such as phone lines or computers. "satellite communications"

Oversett communication til Norsk

1. kommunikasjon

Definisjoner fra Oxford Languages

Tilbakemelding

Barriers to Prevent Loss of containment (figure 3-1)

- Major Accident Hazard Prevention - main objective
- Focus on preventive barriers

 left side of bow tie
- Personal and organisational <u>competence assurance</u> defined as the first barrier from the left

Not covered

Life Extension

First edition (draft), January 2021

6 A presentation by Wood. Ptil Webinar – Subsea Integrity Management

Lack of Data / Quality of Data

Lack of Data	Quality of Data						
Data acquired but lost during operating lifecycle	DFI data quality issues						
 Change of operatorship and incomplete handovers Deficient transfer from project to operational team Change of IT system Confidential data not known of everyone Data not properly recorded or documented 	 Lack of detailed knowledge from design Changes not properly documented in project delivery Inconsistent design data 						
Data not acquired since the start of operating lifecycle	Operational data quality issues						
 Design data required now but not at design period Data difficult to record / not recordable Monitoring / data acquisition not planned in design Unprecedented / emergent failure modes Monitoring only initiated after a failure occurred 	 Inconsistent data from subsequent inspections / tests Unrepresentative data Poorly recorded data Incomplete data Future data uncertainty 						

Impact of Code Changes

Section 5 – standards review

Appendix A

	Barrier Threats Identification			Observability and Consequence of Failures for High Unmitigated Probabilities Threats				Unmitigated Probability Assessment				Interfaces			
Threads	Barrier Failure Mode	Barrier Fallure Cause	Fallure Mechanism	Record of Occurrence	Detection/ Observation (ref Table 7-1)	Highest Observation Accuracy	Consequence (seep, pinhole, leak, rupture)	Location (inside / outside 600m zone)	XMT/ Wellhead	Rigid Pipelines / Risers	Valves	Flexible Pipelines/Riser	Organi sati onal Interface	Operational Interface	Technical Interface
bitannis Crannis	1.Internal fluid induced or rupture 2. Sour fluid induced corrosion collapse or rupture	Corrosion Inhibitor; 1.a. Inefficient corrosion Inhibitor 1.b. Unavailable corrosion Inhibitor 1.c. Inhibitor dosing pump failure 1.1. Topside corrosion Inhibitor Ieak Internal coatingsizading. Operational Ploging, Flow management; 1.8. Ratio flow assurance steady / unsteady state - excursions exceeding parameter excursions exceeding BOD values; (Temperature, pressure CO _b , H ₂ S, water cut, Chorides, iron counts, sulphide / sulphur, SRB counts, and levels, mercury) 1.g. Water chemisity threshold value excursions exceeding BOD values; PH, discolved oxygen, minimal microbial adulty planitonic (in fuld), and sessile (at wail), organic acids, residual inhibitor concentrations 1.1. Nivettability less efficient than assumed in BOD 1.1. Sup flow, accelerated fluid velocities / cavitation 1.1. Dargae to scale film 1.4. Process upset/ ineffective dehydration 1.1. Inapprofilate materials design Filidi somposition management; 2.a. Reservoir souring above BOD 2.b. SRBs inhibition system not efficient 2.c. Inapprofilate materials design	 Localized corrosion or pitting of sleei / Reduction in wait thickness / material loss on gasket or finage seai surface / Seai pressure capacity reduced Inappropriate materials/ localized corrosion or pitting of sleei / reduction in wait thickness 	Happened to Operation	ILI UT Radiography Tracerco Visual Pressure loss recorded during pressure test.	Requires analyses of data	Pinhole, Leak, Seep	Along the pressurzed system typically at hortzontal sections and at 6 o'cicok 6 o'cicok dead legs where debris can build up can be areas of higher probability.	н	ж. Н	Μ	L	Discipline Engineers	Design Fabrication Installation Operation Beyond Design Life	Corrosion Inhibitor Injection system from topside to wells.

Data Strategy & Information Management (section 4)

How to ensure a successful data collection for life cycle management?

Data collection starts at the concept design phase of the asset

Integrity Management Strategy (IMS) in place from start-up

Data Management Planning (data collection and preservation) to ensure through-life data management

Use the latest available technology

Web-based GIS Portal (Section 4)

A web-based GIS portal can include:

1. Seabed survey data

(bathymetry, slope, geohazards and locations of other nearby infrastructure)

2. Asset information

(pipelines, subsea equipment, jumpers, controls, mooring lines and other subsea infrastructure)

3. Pipeline features

(valves, anodes, buoyancy modules, strakes, crossings, spans and touchdown locations)

4. Materials information

(manufacturer, dimensions, grade, specification and heat numbers)

5. Pipelay and fabrication information (including welding and coating records)

6. Pressure testing and commissioning records

7. Longitudinal, transverse and out-ofstraightness profiles

8. Inline and ROV inspections

(anomalies and maintenance records)

Auditable Elements of a Subsea Integrity Management System

Table 2_1	Auditable Element	Section Ref.	Key Requirements	Recommendations				
	i. Subsea integrity management framework	3.2, 3.3, 4.15, 8.0	 Satisfy legislative and regulatory requirements with respect to major accident risk prevention Define organisational responsibility and interfaces 	 Organisational responsibility chart specific to subsea integrity management should be maintained and actively implemented 				
	ii. System sub- division	4.0, 4.16, Table 4-2, 5.0	 To define technical interfaces at subsea system boundaries For pressurised hydrocarbon retaining components, the governing design standards and associated operational pressure definitions / regimes should be understood and clearly communicated 	 Identification of all safety critical equipment, i.e. not solely pressure retaining components Ensure that any opportunities for holistic production monitoring across interfaces are understood and actioned 				
	iii. Documentation management	4.2, 4.4.6	 Demonstrate that design phase documentation is traceable & complete Demonstrate that SIM documentation is maintained 	 Provision and maintenance of a centralised document management system for subsea equipment through asset life 				
	iv. Accessibility of historic / live operational data	4.1, 4.10, 4.11	 Demonstration of operational data availability Operator has established operational trends and is actively monitoring for operational changes Logging of subsea valve movements and all abnormal / shutdown events 	 Graphical presentation of long-term operational parameters Comparison of operational parameters (e.g. pressure, temperature, flowrate, fluid composition) with design intent Awareness that degradation mechanism may be more onerous for equipment that is non-operational 				
	v. Threat assessment	4.5, 4.8, 4.12, 4.14, 6.0	 Equipment failure mode risk assessments completed and maintained (Appendix A presents a generic unmitigated threat assessment for typical subsea equipment) Demonstrate an awareness of relative subsea component risk, e.g. operator understands relative utilisation levels across technical interfaces 	 Perform peer review of risk assessments Cross discipline risk reviews Appreciate the implications of emergent threats Engage and collaborate with wider industry to share operational experience / learnings 				
	vi. Management of Change	4.1, 4.6, 4.14, 4.16, 5.0	 Demonstrate MoC process is in place and share relevant MoC examples Implications of the change are assessed on overall system sub components Demonstrate awareness and understanding of any changes or evolution in codes and standards 	 MoC process should describe communication channels, ensuring interdisciplinary expertise is captured Carefully appraise whether replacement equipment should be treated as 'like-for-like' or 'new' Highlight where operational changes impact safe operating limits 				
	vii. In service integrity management	4.4.7, 4.5, 4.9, 4.10, 4.11, 7.0, 8.2.4	 Actively maintained and documented SIM reports through life cycle Presentation / demonstration of instrumented safety system controls and barriers Anomaly tracking process 	 Understand extent and implications of any operational changes made to instrumented safety systems, e.g. disabled or inhibited alarms, bypassing of barriers or controls, LP trips etc Regular system wide risk re-assessment and SIM updates 				
	viii. Lifetime extension	9.0	 Availability of through life SIM records and operational data history Reassessment of threats 	17. Corporate knowledge management & communications 18. Succession planning				

Technical risk and safety management

Critical for ongoing confidence in integrity management / technical assurance

Some useful points / references by Andrew Hopkins (2019), "Organising for Safety; How structure creates culture";

- Need for strong and independent technical engineering authority
- Ensure safety concerns are not over-ruled by other operational goals
- Is your goal to ensure regulatory approval, or to ensure operations are safe?

How do you ensure that in your operations?

What is our approach?

- Our GTEN (Global Technical Expert Network)
- Demonstrate technical strength of decisions
- Technical hierarchy to quickly reach the right experts
- Route to rapidly elevate technical issues to senior leadership

ORGANISING FOR SAFETY

How structure creates culture

ANDREW HOPKINS

Assurance Framework & Expertise

What are the critical elements of your assurance frameworks?

- Competence framework / assurance / audit
- Management systems (compliance vs safety?)

Who are your technical specialists, Key Speciality Leaders, Subject Matter Experts?...

- ..., and how do you find / engage them, and at the right time?
- Global Technical Expert Network, GTEN

Contributions

- Thomas Garten Study Lead
- Ian MacLeod Study Sponsor & Peer Review
- Flexible Pipelines TA
- Rigid Pipelines TA
- Wellheads TA
- Valves TAs
- Lifetime Extension SME
- GIS SME
- Risk and Reliablity Team Lead
- Integrity Engineering SMEs

https://www.ptil.no/en/technical -competence/explore-technicalsubjects/reports-fromprojects/2021/management-ofintegrity-from-wellhead-tofacility/

PSA / PTIL Document Link -

https://www.ptil.no/contentasse ts/1c056b61222a41b6ba588698 7dc1de1e/guideline-to-subseaintegrity-management.pdf

Thoughts, comments or questions?

Thomas Garten Reliability SME thomas.garten@woodplc.com D: +47 51 37 51 37 Ian MacLeod Technical Director ian.macleod@woodplc.com D: +44 (0)7766 772743

